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ABSTRACT

The appearance of a material viewed in millimeter wavelength is a function of its reflectivity and absorptivity.
These optical properties can be derived from measurement of the complex dielectric constant. Knowledge of
the imaginary component is particularly important to assess the brightness of transparent or semi-transparent
materials, in which the return from the back surface contributes to the overall reflection. The method pre-
sented here is well-suited to determine the dielectric constant of small samples of low-loss materials, and uses a
modification of the dielectric-post resonator technique in which the sample fits into a larger, solid post fixture.
The measurement frequency varies only slightly among different sample materials because the electromagnetic
properties of the resonance are largely set by the supporting fixture. The method can be used to measure liquids
and powders, as well as solid materials. The design and electromagnetic theory of the resonant technique are
described, and the precision is discussed in context of sample measurements.
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1. INTRODUCTION

The measurement of dielectric constant is used to determine the reflection, absorption, and transmission prop-
erties of electromagnetic radiation in materials. In particular, these optical characteristics, as applied to the
appropriate wave bands, determine the appearance of materials viewed in millimeter and terahertz-wave imaging
systems.1,2 While the dielectric constant governs the electromagnetic boundary conditions at material interfaces
and, hence, the reflectivity, the imaginary component of the dielectric constant determines electromagnetic en-
ergy loss, and is particularly important to account for the brightness of transparent or semi-transparent materials
in which the return from the back surface contributes to the overall reflection. Thus, measurement of the complex
dielectric constant is important to establish electromagnetic signatures for explosive detection; it is also used to
guide the development of simulants, and to establish standards for active and passive millimeter wave detection
systems.3

The method presented here determines the dielectric constant of low-loss materials in solid, liquid, or powdered
form, using a modification of the dielectric-post resonator technique (also known as the Courtney method), by
which the dielectric constant of a material is measured by detecting electromagnetic resonances in a cylindrical
sample of the material.4–10 In a typical experimental setup, the sample “post” is placed between two metal
plates to trap the electromagnetic modes in the cylindrical sample, but the sample is otherwise unconfined, and
the excitation is done by antennas in free space. The method is desirable for measurements of explosives because
it does not bring the material into direct contact with electrified probes, and the metal plates used in the system
can be grounded. While the method generally uses a solid post made entirely of the material, the modification
described in this paper employs a rigid, cylindrical post fixture from which a small, cylindrical column is removed;
it is into this cavity that the sample material is placed.
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2. THE MODIFIED DIELECTRIC-POST RESONATOR

The modified post fixture consists of machined Rexolite, a low-loss plastic which has well characterized dielectric
values in millimeter wavebands.11,12 Ref 12 cites dielectric values for Rexolite at 10GHz as ε = 2.53 + 0.0011 i,
with precision ±0.02± .0003 i. The configuration shown in Figure 1, with cavity diameter a = 0.483 cm, cylinder
diameter b = 0.953 cm, and cylinder height c = 0.632 cm, provides for the measurement in the primary TE mode
at 22.6GHz. Variances in the manufacture of the fixture are ± 0.008 cm for a, ± 0.0002 cm for b, and ± 0.003 cm
for c. The cavity has an integrated floor of thickness d = 0.0039 cm to contain liquids and powders. The spatial
dimensions and dielectric constant of the post are the primary determinants of the resonance frequency, so that
fixtures of different sizes can access other frequencies for measurement.

Figure 1. Cut-out view of dielectric-post resonator fixture.

The measurement system consists of the resonator post sandwiched between two parallel copper plates. The
post “resonates” at frequencies where the electromagnetic field is confined to the immediate region of the post,
diminishing to zero at increasing radius. Because of this asymptotic behavior, despite being 10 cm in diameter,
the plates are, in effect, infinite.5 The antennas are two loop antennas entering the system through small holes in
the bottom plate, with the center wire of a coax connector extending in a loop to connect on the bottom plate.
The antennas are connected by 2.4mm coax to an Agilent E8364C network analyzer to measure the coupling
between antennas via the S-parameter S21. The frequency spectrum of the S21 response exhibits the resonance
and the resonance width. The system is shown in Figure 2. The antennas are positioned asymmetrically relative
to the resonator post, and in close proximity (at a distance of about 5mm of the outside of the fixture).

Figure 2. Dielectric-post resonator system.

The use of a fixture such as described here proves to be an effective application of this technique. In addition
to providing a holder for liquids and powders, the rigid structure of the fixture provides a uniform and accurate
configuration of the post, which is important for measurement precision. Another useful feature of having most
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of the post volume occupied by an unvarying dielectric structure is that the shift in resonance spectrum is
perturbative in nature, which maintains the measurement frequency near the target value without changing the
relative order or spacing of the resonances, thus making the resonance spectrum easy to interpret.

The primary advantage of this technique in characterizing the millimeter wave optical properties is that
measurement of the imaginary component of the dielectric constant can be accomplished with better precision
than other common methods, such as contact probes and free-space transmission/reflection methods.13 The
significance of this will be discussed further in Section 5.

Finally, the method uses relatively small amounts of material, as the sample volume is only 0.11ml. This is
an advantage in managing the risks associated with the measurement of sensitive materials and explosives.

3. USING THE DIELECTRIC-POST RESONATOR TO MEASURE DIELECTRIC
CONSTANT

3.1 Theory of the Modal Resonance

Assuming sinusoidal time dependence e−iωt for fields in Maxwell’s equations leads to Helmholtz wave equations
for the electromagnetic fields H and E, for which solutions are found using separation of variables in cylindrical
coordinates. The boundary conditions at the conducting plates at z = 0 and z = L require the fields Eφ, Eρ,
and Bz be zero; and at the dielectric boundaries at ρ = a and ρ = b, continuity applies to normal D and B, and
tangential E and H.

Solutions to the Helmholtz equations and boundary conditions are indexed by separation constants in the
separation of variables (in the manner that modes in circular fibers are treated in Sec 8.11 of Ref. 14). In the
following, solution is limited to the special case of fields that are homogeneous in φ-coordinate (m = 0 in the
usual notation) and in which the trapped wave is 1/2-wavelength between the plates (p = 1). In the case of
m = 0, the modes are transverse magnetic, “TM” and transverse electric “TE”, where the fields everywhere have
Bz = 0 or Ez = 0, respectively. (Modes with m != 0 are hybrid modes which have mixed Bz and Ez.) Among
these solutions, the modes are ordered in frequency with index n. In the present dielectric-post resonator, the
primary measurement mode is TE with m = 0, n = 1, and p = 1, and is designated TE011. The TM011 has also
been used for measurement.

Matching boundary conditions at ρ = a and ρ = b provides simultaneous equations which can be solved by
the determinental equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−e1J ′(1) 0 e2J ′(2) 0 e2Y ′(2) 0 0 0

J(1) 0 −J(2) 0 −Y (2) 0 0 0

0 −u1J ′(1) 0 u2J ′(2) 0 u2Y ′(2) 0 0

0 J(1) 0 −J(2) 0 −Y (2) 0 0

0 0 e3J ′(3) 0 e3Y ′(3) 0 e4K ′(4) 0

0 0 J(3) 0 Y (3) 0 −K(4) 0

0 0 0 u3J ′(3) 0 u3Y ′(3) 0 u4K ′(4)

0 0 0 J(3) 0 Y (3) 0 −K(4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 . (1)

The notation has been simplified to make the formulation compact. Briefly, the determinant involves four limits
associated with approaching the boundary at ρ = a from either side, and the boundary at ρ = b from either
side. The notational parameters are defined in Table 1. The radial wavenumbers are given in region 1 (sample)
by γ1

2 = ε1 (2πf0)2/c2 − (π/L)2, in region 2 (Rexolite fixture) by γ2
2 = ε2 (2πf0)2/c2 − (π/L)2, and in region

3 (air) by β2 = (π/L)2 − (2πf0)2/c2, where ε1 = ε′1 + iε′′1 and ε2 = ε′2 + iε′′2 are the (complex) relative dielectric
constants in the sample and the Rexolite region, respectively. The frequency at resonance, f0 = f ′

0 + if ′′
0 , will

also be a complex quantity.

This formalism provides a method to derive the dielectric constant ε1 from the measurement of the resonant
frequency f0. When f0 is known by direct measurement, the unknown dielectric is found by searching for values
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Table 1. Notational Definitions

region 1 region 2 region 2 region 3
ρ = a ρ = a ρ = b ρ = b

x1 = γ1a x2 = γ2a x3 = γ2b x4 = βb

e1 = ε1/x1 e2 = ε2/x2 e3 = ε2/x3 e4 = ε0/x4

u1 = 1/x1 u2 = 1/x2 u3 = 1/x3 u4 = 1/x4

J(1) = J0(x1) J(2) = J0(x2) J(3) = J0(x3) K(4) = K0(x4)

J ′(1) = −J1(x1) J ′(2) = −J1(x2) J ′(3) = −J1(x3) K ′(4) = −K1(x4)

Y (2) = Y0(x2) Y (3) = Y0(x3)

Y ′(2) = −Y1(x2) Y ′(3) = −Y1(x3)

of the dielectric which solve Equation (1). While this approach to the modal solution of the resonance equations
has been very successful, electromagnetic simulation software may also be applied to identify resonances in di-
electric resonators.15

3.2 Detection of Dielectric Constant from Measurement of Resonant Response

The TE011 resonance line is identified in the S21 spectrum by a narrow-peaked response in the vicinity of 22–23
GHz. The resonance line shape exhibits a classical damped oscillator response, and can be parameterized, with
the addition of a uniform (complex) background, by:

S21 = A0 +
A1

f − f ′
0 − i f ′

0/(2Q)
. (2)

There may be a shift in resonant frequency, not included in this formulation, due to the perturbation of lossy
boundary conditions;4,14 this shift is not expected to be greater than the imaginary part of the frequency. In
Equation (2), the imaginary component of the frequency is couched in terms of the Q-factor of the resonance.
The imaginary component of the frequency for input into the determinental model must be corrected to exclude
losses not associated with the dielectric loss, as explained next. The Lorentzian model is determined numerically
from the experimental data by applying the Mathematica16 function FindFit with the five fitting parameters
Re[A0], Im[A0], A1, f ′

0, and Q.

The detection of the dielectric constant derives from solution to Equation (1) with the input of the complex
frequency f ′

0 + if ′′
0 . The real component is the resonance frequency as measured from the spectrum, while the
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Figure 3. Dielectric as a function of frequency for three Q-factors: Q = 1200 (solid line), Q = 700 (dashed), and Q = 200
(dotted).
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imaginary component is derived from the measurement data on the filled and empty fixtures. It is necessary to
incorporate the empty fixture data because in the determinental model, the imaginary component is associated
with electromagnetic energy loss which is assumed to occur entirely within the dielectric. Thus, the imaginary
component of the frequency is based on what the Q-factor of the resonator would be excluding the energy loss in
the Rexolite fixture, copper plates, and radiatively from the ends of the open plate system. This extraneous loss
is quantified by the Q-factor of the empty fixture. The imaginary component of the frequency is thusly given by
f ′′
0 = f ′

0/(2Qcorr), where:9

1

Qcorr
=

1

Qfilled
− 1

Qempty
. (3)

With the insertion of the complex frequency, the determinental condition is expressed with two equations –
separating real and imaginary terms – and a numerical root finder (Mathematica16 function FindRoot) is applied
to solve the two equations simultaneously in unknown dielectric parameters ε′1 and ε′′1 . The dependence of the
dielectric constant on the detected frequency and the detected (uncorrected) Q-factor is illustrated in Figure 3.

3.3 Measurement Precision

Variations in fixture and plate geometry occur with assembly of the resonator for measurement, and in the
machining of the individual fixtures. These are expected to be primary sources of measurement error. The
frequency predicted from the determinant model for the empty fixture is 22.715GHz and the Q-factor, 3300
(assuming only dielectric loss). The measurement statistics on five different fixtures are shown in Table 2.

Table 2. Statistics of Empty Fixture Measurements

Fixture f0 σf Qempty σQ

B1 22.752 0.008 1379. 59.
B2 22.762 0.012 1393. 61.
B3 22.764 0.005 1371. 62.
B4 22.785 0.008 1410. 57.
B5 22.733 0.015 1360. 45.

On average, the standard deviation in frequency is 0.010GHz and in Q-factor is 53. These variations can
be propagated into errors in the measurement of dielectric constant, for example with a Monte Carlo simulation
as described in Section 4. The frequency standard deviation produces a variance in real part of the dielectric of
about 3%. The expectation value for the air dielectric value is 0.95 based on the resonant-frequency mean value,
so systematic errors in the dielectric are possible on the order of 0.05. For the imaginary part of the dielectric,
the errors are generally smaller than 20% for 200 < Q < 1200.

4. EXPERIMENTAL RESULTS

The focus of the material measurements is explosive materials, hazardous liquids, and various inert substances and
explosive simulants. A measurement on liquid diesel fuel is presented as an example. Figure 4 shows the TE011

resonance data and line-fit for the fixture loaded with diesel fuel, and for comparison, the empty fixture. Using
the fitted data for resonance frequency and Q-factor, the determinental equation is solved to find the sample
dielectric, ε′ = 2.1 and ε′′ = 0.0041. An error analysis is performed by a Monte-Carlo simulation.17,18 This
consists of generating sets of values of f0, Qfilled, and Qempty, each selected randomly from distributions which
have normal error distributions corresponding to the measurement means and standard deviations. For each
set of values, corresponding values of dielectric constant are generated by solution of the determinental model,
Equation (1). The means and standard deviations of the resulting distributions of simulated dielectric constants
are evaluated. The results are shown in Figure 5. The ellipse denotes one standard deviation in measurement
precision based on the propagated random error and estimated systematic error. From this analysis, the expected
precision is 5% in real component and 20% in imaginary component of ε. This measurement of dielectric of diesel
fuel is consistent with ε′ = 2.19±0.05 reported at 1.7GHz with the assumption of negligible loss.19 It should be
noted that relative to the absolute value of ε, the measured imaginary component is accurate to 0.03%, which is
very good compared with probe measurements.20
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Figure 4. Resonance spectrum with diesel fuel (left) and air (right) filled fixture. Line-fitting is shown in dashed overlay.
The fitted line parameters for the diesel-filled post fixture, averaged over ten measurements, are 22.305 ± 0.015GHz and
Q-factor 1123 ± 25.

5. OPTICAL PROPERTIES BASED ON DIELECTRIC MEASUREMENT

The connection between the dielectric constant measurement and the optical appearance of an object imaged in
millimeter waves is made through geometric optics. Consider a plane wave which is described as the real part of
the complex quantity

E(x, t) = Eeikx−iwt . (4)

In a dielectric medium, the wavenumber k of an electromagnetic wave is related to its frequency ω = 2πf by

kc =
√
µε ω , (5)

where µ and ε are permeability and permittivity relative to empty space. Thus, when the dielectric is a complex
number, the wavevector is also complex. Assuming µ = 1, and writing n =

√
ε = n′+ i n′′ (here n is the complex

index of refraction), the plane-wave electric field is the real part of the complex quantity

E(x, t) = Ee−n′′(ω/c)x ein
′(ω/c)x−iωt . (6)

The reflection and transmission of electromagnetic waves at a plane interface can be described using conventional
Fresnel formulas using the (complex) refractive index; transmission losses in the medium can be described
according to the exponential term in Equation (6).
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Figure 5. Distribution of diesel fuel dielectric values in a Monte-Carlo simulation based on measurement and statistics.
The ellipse denotes the measurement precision.
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Because objects being imaged in millimeter waves are often on the order of a wavelength in thickness, the
total reflected field may involve multiple reflections from front and back surfaces. To account for intensity of
radiation reflected from an object, accurate knowledge of the optical properties (refractive index) is necessary.
When the illumination bandwidth is sufficiently narrow, the oscillatory term involving n′ in Eq. (6) determines
how multiple reflections will add together, in or out of phase. Also, for material depths x for which the magnitude
of the exponent in the n′′-term is greater than unity, transmission losses allow only the reflection from the front
surface to be observed. These issues in how radiation interacts with materials are important for characterizing
detection signatures, and in identifying explosive simulant materials.3

6. CONCLUSION

The use of a modified dielectric-post resonator technique to measure dielectric constant at 21–23 GHz is demon-
strated. The technique is used on liquid, powdered, and solid samples, with volume on the order of 0.10ml. The
measurement of the imaginary component of the dielectric constant is generally decoupled from the measurement
of the real component, so one of the main advantages to this measurement system is that precise measurements
can be made on low loss materials which have small imaginary components. The technique appears to be most
useful for low loss materials with imaginary component of dielectric between 0.002 and 0.2. The main limitations
are due to the Q-factor of the unloaded fixture, and the difficulty in detecting broad resonances from instrumental
background noise.10

The primary resonant mode for measurement has been the lowest frequency TE mode, TE011. Additional
modes which have been identified8 include the HE111 mode at 19GHz and the TM011 mode at 23GHz. Ap-
plication of this method to these modes would provide additional data points, or possible information about
frequency dispersion.
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