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ABSTRACT
We search for evidence of a chaotic attractor in data from the Vela and Crab pulsars and in a coher-

ent turbulent plasma model for pulsar emission. Both the model and the observational data are tested
using the method of time delays to reconstruct an attractor and the method of Grassberger & Procaccia
to compute its dimension. The analysis is an attempt to compare theory with observation. The plasma
model clearly shows a low-dimensional attractor ; this result is conÐrmed by computing the largest Lya-
punov exponent. There is no evidence for chaos in any of the pulsar data. A deÐnitive test will require
pulsar data of extremely high time resolution.
Subject headings : chaos È pulsars : general È pulsars : individual (Crab pulsar, Vela pulsar) È

radiation mechanisms : nonthermal È turbulence

1. INTRODUCTION

Deterministic chaos is the unpredictable and apparently
random behavior exhibited by certain systems even though
those systems are governed by fully deterministic laws.
Chaos is characterized by a sensitive dependence on initial
conditions and a strange attractor in the phase space of the
system. An attractor is the path that a trajectory in phase
space tends to follow. When phase-space trajectories have a
strange attractor, simple orbits do not close on themselves
and appear distorted into never repeating loops of a fractal-
like structure. A strange attractor is characterized by a non-
integer dimension. To measure the dimension of an
attractor, the correlation sum method of Grassberger &
Procaccia (1983) is frequently used. For those instances
when the phase space of the system is not known, it is useful
to apply the method of time delays (Packard et al. 1980 ;
Takens 1981). This is true for pulsar radio data, which
consist only of a time series of information about the system
generating the emission. The method of time delays enables
the attractor to be reconstructed from delay vectors derived
from the time series ; then the dimension of the recon-
structed attractor can be computed by the Grassberger &
Procaccia method.

When necessary, the Grassberger & Procaccia analysis
should be validated by additional methods (Osborne &
Provenzale 1989). One way to do this is to compute the
largest Lyapunov exponent of the system. Lyapunov expo-
nents are the average rates of divergence or convergence of
nearby orbits in phase space. Since nearby orbits corre-
spond to nearly identical states, exponential orbital diver-
gence means that systems whose initial di†erences cannot
be resolved will soon behave quite di†erently. Long-term
predictions of chaotic systems are virtually impossible, even
if the physics is known completely, because errors in mea-
surement of the initial state propagate exponentially fast. A
system is deÐned to be chaotic if it contains any positive
Lyapunov exponent which is statistically signiÐcant. The
magnitude of the largest positive exponent reÑects the time-
scale on which the system becomes unpredictable.

1 Present address : Department of Astronomy, University of Minnesota,
Minneapolis, MN 55455.

Pulsar data are well suited for this type of analysis
because some characteristics of the emission have an unpre-
dictable and seemingly random nature. There are several
reasons to pursue such an analysis. If the randomness can
be identiÐed with an underlying attractor of low dimension,
this would imply that the dynamics can be described by a
small number of parameters, comparable to the dimension
of the space in which the attractor is embedded. Another
use of this information is to test theoretical models. A theo-
retical model which displays a strange attractor of similar
dimension with an attractor in the observational data
would advance signiÐcantly the e†ort to solve the long-
standing question of how pulsars operate.

There have been a number of studies which suggest that
chaos is present in the time signals of pulsars, although
none can be considered deÐnitive. Romani, Rankin, &
Backer (1992) examined pulse-to-pulse intensity records of
PSRs B0823]26, B1929]10, and B1933]16. While two of
the three pulsars showed behavior expected from random
white noise, PSR B0823]26 seemed qualitatively di†erent
under the analysis of Grassberger & Procaccia. Romani et
al. use this observation to infer that a dimension less than 2
applies to the radio signal from this pulsar, although an
attractor is not established according to the techniques
established by Grassberger & Procaccia. Zhuravlev &
Popov (1990) examined the microstructure of 480 individ-
ual pulses from PSR B0809]74. In 20% of the pulses they
Ðnd an attractor of dimension less than or equal to 5.3 using
the Grassberger & Procaccia method. Because their data
sets do not have the number of points required by theory to
establish an attractor of this dimension, this attractor, too,
may only be an artifact. Both the Romani et al. and the
Zhuravlev & Popov analyses show that the behavior of
some of the pulsar data sets is qualitatively di†erent from
white noise. However, to suggest that this behavior is due to
an attractor is not rigorous, since purely stochastic data can
also deviate from white noise.

A test of a speciÐc emission theory requires a detailed
description of the emitted pulse. A numerical model by one
of us (Weatherall 1997, 1998) solves for the time evolution
of the plasma wave turbulence in the pulsar source region.
Conversion of this turbulence into electromagnetic emis-
sion is one of the proposed mechanisms for radio emission
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(Asseo 1996). In this model, the emission derives from tem-
porally transient and spatially localized wave structures in
the turbulence and the superposition these individual
““ bursts ÏÏ underlie the noise in the pulsar signal. If this
process is generating the radio emission, the signal could be
expected to share the statistics of the underlying turbulence.
The numerical solutions for the turbulent generation of
electromagnetic modes are detailed enough to apply the
same time series analysis which is applied to the obser-
vational data. The results of this analysis are presented here.
The computer solution for turbulent plasma emission
shows that the bursts display deterministic behavior char-
acterized by a strange attractor of dimension 2.09. Thus,
this theory provides a clear prediction to test with obser-
vational data.

To test this idea, the time series analysis is applied to two
pulsar data sets : an attractor is sought in both the nanos-
tructure of the Crab pulsar (PSR B0531]21) and the timing
and amplitude variations of the Vela pulsar (PSR
B0833[45). Although the earlier studies of chaos in the
time signals of pulsars provide some support for an attrac-
tor of Ðnite dimension, there is no evidence for an attractor
in the new data.

The analysis techniques, and how they apply to the Crab
and Vela pulsar data, will be detailed next in ° 2. The
relationship of the plasma model data to the actual pulsar
data is also described in ° 2. Results of the analysis are
presented in ° 3. The discussion in ° 4 addresses the limi-
tations of the analysis relating to the present data and the
qualiÐcations attached to other chaos Ðndings in pulsars.
The success of the model in predicting chaos remains an
open issue.

2. METHOD OF ANALYSIS

The correlation sum technique of Grassberger & Pro-
caccia is the preferred method for computing dimension
because it requires fewer data points than other methods
and still gives a good result for the dimension because the
scaling range for computing dimension is almost twice that
of other methods (Greenside et al. 1982). Also, it is a very
easy method to implement because it provides an estimate
of dimension based purely on the statistics of pairwise dis-
tances. To apply this technique to time series data, the
method of time delays (Packard et al. 1980 ; Takens 1981) is
Ðrst used to reconstruct the phase space of the system.
Given a measured time series of N points,

the ith point on the trajectory in aMx(t1), x(t2), . . . , x(t
N
)N,

phase space of n dimensions can be represented by using the
vectors
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where n is the ““ embedding dimension ÏÏ and q is a Ðxed
interval between observed points in the time series. For
n \ 1, the axis is x(t). For n \ 2, the ““ x- ÏÏ axis is x(t) and the
““ y- ÏÏ axis is x(t ] q). For n \ 3, the ““ x- ÏÏ axis is x(t), the
““ y- ÏÏ axis is x(t ] q), and the ““ z- ÏÏ axis is x(t ] 2q), and so
on for higher dimensions. In this manner, the data set can
be probed for the appropriate dimension of phase space
needed to reconstruct the attractor.

Takens (1981) has provided a proof that this procedure
does (almost always) reconstruct the original phase space of
the system, as long as the embedding dimension n [ 2l] 1,

where l is the dimension of the attractor. It should be noted,
however, that as long as n [ l, the reconstructed attractor
will usually have the same dimension as the original attrac-
tor (Eckman & Ruelle 1985). The choice of delay time, q, is
almost arbitrary. If q is too small (compared with the char-
acteristic recurrence time of the system, which is the recipro-
cal of the dominant frequency obtained from the power
spectrum), the trajectory is collapsed onto the diagonal in
phase space because the points and their delays are almost
equal. If q is too large, then successive points are not well
correlated and the trajectory is distorted. As long as q lies
between these two extremes, the reconstruction of the
attractor and, hence, the measured dimension of that attrac-
tor, should not depend on the choice of q. It is generally
best, however, to choose the smallest possible delay time
without causing diagonalization of the attractor (Buzug,
Reimers, & PÐster 1990 ; Froehling et al. 1981).

The correlation sum is formally deÐned as
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where # is the Heaviside function and o X o is the norm of
the vector, X. Although any norm will do, the Euclidean
norm is used, which is deÐned in an n-dimensional space by
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where is the kth element of the vector X. For intervals rX
kmuch smaller than the measure of the data set, C(r) gener-

ally behaves as a power of r :

C(r) P rm . (4)

Evaluation of the correlation sum for several embedding
dimensions gives a family of curves when plotted on log r
versus log C(r) axes. If the attractor is not fully embedded in
a dimension or if there is no attractor, then the slope of the
line, m, will be equal to the embedding dimension, n. If there
is an attractor, and it is fully embedded, then the slope of the
line, m, will be the dimension of the attractor, l. The number
of data points required to provide a good estimate of the
dimension is N º 10l@2 (Ruelle 1990) ; however, Abraham et
al. (1986) make the argument that reliable dimension esti-
mates can be made with smaller data sets.

Is it possible that this method could indicate an attractor,
when in fact the system is purely stochastic? The answer to
this question is yes ; in particular, some systems with
colored noise, namely noise which has a power-law spec-
trum with random, uniformly distributed Fourier phases,
can give a false impression that the slopes are converging on
an embedding dimension (Osborne & Provenzale 1989).
The Harding, Shinbrot, & Cordes (1990) analysis of the
Vela timing noise is an example where the method fails to
discriminate between stochastic and chaotic signals. At the
same time, all noise does not doom to failure the correlation
sum method by a†ecting dimensions of nonexistent attrac-
tors or false dimensions of real attractors. For example,
Theiler (1988) and Malraison et al. (1983) do not Ðnd attrac-
tors in systems which are dominated by noise. In other
systems which do have real attractors, such as Shaw (1984)
and Guckenheimer & Buznya (1983), the attractor still
shows up in the correlation sum analysis, with the correct
dimension, despite the existence of noise in the data.

The algorithm for computing dimension consists of
choosing a point at random on the attractor and computing
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the distance norm to all other points on the attractor. These
distances are then sorted in order of distance to nearest
neighbor, distance to next nearest neighbor, and so on. The
process is repeated in a number of ““ trials ÏÏ on other ran-
domly selected data points on the attractor. The data from
a series of trials are used to compute averages of these
distances. When plotted on log L versus log N axes, where
N is the number of points within a distance L , the corre-
lation sum exponent, m, can be determined. We tested this
method on the Lorenz, & attractors andRo� ssler, He� non
obtained dimensions of 2.05, 2.02, and 1.24, respectively.
These numbers agree with published results (Grassberger &
Procaccia 1983 ; Wolf et al. 1985).

Another measure of chaos is the Lyapunov exponent. It
has the advantage that it is not fooled by the colored noises
which give spurious results for the dimension algorithm. Its
disadvantage is that accurate estimates of the Lyapunov
exponents can only be derived from data sets with very
good signal-to-noise ratios. Given a continuous dynamical
system in an n-dimensional phase space, the long-term evol-
ution of an inÐnitesimal n-sphere of initial conditions will
produce an n-ellipsoid due to the locally deforming nature
of the Ñow as the sphere moves along the trajectory. The ith
one-dimensional Lyapunov exponent is then deÐned in
terms of the length of the ellipsoidal principal axis p

i
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The Lyapunov exponents are related to the expanding or
contracting nature of di†erent directions in phase space. If
any Lyapunov exponent is positive, then chaotic motion is
established. The exponents measure the rate at which
system processes create or destroy information and are
expressed in bits of information per time unit (Shaw 1981).
If an attractor had an exponent of 2 bits per time unit, and
an initial point were speciÐed with an accuracy of one part
per million (about 20 bits), then the future behavior of the
system could not be predicted after about 10 time units [20
bits/(2 bits per time unit)].

A method developed by Wolf et al. (1985) is used to
measure the largest Lyapunov exponent. It is known that
an attractor reconstructed from the method of time delays
has the same Lyapunov exponents as the original attractor.
Therefore, to estimate the largest Lyapunov exponent
(denoted by Wolf Ïs FORTRAN program recreatesj1),phase space by the method of time delays. By monitoring
the distances between a single pair of nearby orbits along a
Ðducial trajectory through the entire data Ðle, is esti-j1mated. We tested the algorithm on the attractorRo� ssler
with a result of 0.112 for the largest Lyapunov exponent
(Wolf gets 0.13). The test was also applied to a limit cycle,

and a decaying orbit, which are sens-j1\ 0, j1 \[0.18,
ible results. This Lyapunov exponent test is useful because it
can provide an independent conÐrmation of positive results
from the dimensional analysis. However, because this
analysis relies on very clean data sets for accuracy, it is only
applied to the pulsar model data.

The methods outlined above have been successful in
documenting chaos in laboratory systems when a probe is
placed at a Ðxed point in the Ñuid to measure something
about the Ñow, such as direction or speed, as a function of
time (Gollub & Swinney 1975). What is it that is being
measured by the remote detection of pulsar radio emission?

In the context of the plasma turbulence model, the radio
emission from an individual burst is a measure of the local
electric Ðeld in a single coherent wave structure : thus, radio
emission serves exactly like a probe in the laboratory
experiment. Unfortunately, this idealization of a single,
resolved burst is only realized in the computer model.

The Crab pulsar data sets sample the emission on very
short timescales, but not short enough to resolve an individ-
ual burst. We infer that these data sample a localized
volume (the light transit distance is very small over 10 ns)
involving either a collection of bursting wave structures or a
repeating bursting structure. Here the temporal modulation
of the radio emission could be a measure of burst rate or
burst intensity. The amount of rotational phase that occurs
during a giant pulse is very small.

In the Vela pulsar data sets, the radio emission becomes a
measure of the rotational phase of the region in the magne-
tosphere which has the greatest emissivity due to turbulent
activity. The phase of an individual pulse appears to be
positioned randomly within the average emission proÐle.
Assuming that the height of the emission above the polar
cap is constant, which is consistent with radius-to-frequency
mapping (Thorsett 1991 ; Komesaro†, Morris, & Cooke
1970), the phase corresponds to a spatial position in the
plasma magnetosphere. Thus, during each rotational cycle,
the turbulent emission maps to a di†erent location in the
magnetospheric emission region.

Of course, the prediction of chaos by one standard of
measure (burst electric Ðeld) does not necessarily carry over
to other measures (burst rate or burst position). Also, bursty
turbulence provides a conceptual meaning to the emission
measurement but does not need to be correct in order for
the test of observational data to be valid. Our search for an
attractor relies only on the assumption that the signal con-
tains information about the behavior of the emission
source.

2.1. Application to Crab Pulsar Data
Observations of single giant pulses of the Crab pulsar

were used for this analysis (Mo†ett 1997). The data include
VLA2 observations at L band (1435.1 MHz), C band
(4885.1 MHz), and X band (8414.1 MHz) and at a time
resolution of 10 ns and a bandwidth of 50 MHz. The right-
and left-circular polarizations were sampled directly, and
the dedispersion techniques of Hankins & Rickett (1975)
were used to reconstruct the pulse. The circular polariza-
tions were then summed to form the total intensity. In
Figure 1 the intensity curve for an X-band giant pulse is
shown along with the corresponding right- and left-hand
circular polarizations.

The data analyzed consisted of the following records :

1. Thirty-eight total intensity records in the three bands.
The number of data points ranged from 200 to 5000 per
pulse.

2. Forty records of right- and left-circular polarization
predetection voltages, with the same range of data points.

The interval for the time series is q\ 10 ns, which is the
time between each data point ; since nearby data points do
not have nearly the same value (because they are Nyquist
samples of the 50 MHz bandwidth), there is no danger of

2 The VLA is a telescope of the National Radio Astronomy Observa-
tory, which is operated by Associated Universities, Inc., under a coopera-
tive agreement with the National Science Foundation.
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FIG. 1.ÈGiant pulse of the Crab pulsar at X band with 10 ns resolution
and a bandwidth of 50 MHz. (a) Total intensity ; (b) intensity of right-hand
circular polarization ; and (c) intensity of left-hand circular polarization.

diagonalizing the attractor (assuming one is present). A
large number of trials was used to attain power-law behav-
ior for the correlation function. For the smaller data sets,
75% of the points were selected at random as the initial test
point for individual trials. For good results from the larger
data sets, 40% of the data points were used as trials.

2.2. Application to Vela Pulsar Data
The Vela pulsar data were acquired with the VLA by

using the 28 detected output channels of the Mark 3 video
converter to sample the 28 individual channels from the

Mark 3 video detector. Each channel had a 1 MHz band-
width with a 200 ks time constant and a sampling rate of
10.08 kHz. These data were taken at L band (1435.1 MHz).
The pulse amplitude and timing were measured for each
period based on the point on each pulse with the largest
magnitude. In cases where there were several points with
the largest magnitude (sawtooth or Ñat top), time was mea-
sured at the Ðrst point. Because the position of these ampli-
tude and timing points is a†ected by the system noise, the
integrated Ñux of each pulse was measured as well as the
times of arrival of the centroid of each pulse.

Four di†erent aspects of this data set were analyzed :

1. Pulse peak intensity for three frequency channels in a 7
minute data record and for two frequency channels in a
second 7 minute data record. The data sets have approx-
imately 4700 points.

2. Pulse-to-pulse interval, measured between the peaks of
the pulses, for the same data.

3. The integrated Ñux of each pulse for this data set.
4. Pulse-to-pulse interval, measured between the cen-

troids of the pulses for the same data.

The pulse-to-pulse intervals measure the arrival time Ñuc-
tuations with respect to the underlying period. The signal
amplitude variation and arrival time Ñuctuations would
appear to be connected to activity in the pulsar magneto-
sphere.

Although the data are sampled at regular intervals (or
almost regular intervals, considering the way the resulting
data sets are constructed), the system is not being contin-
uously sampled because we only have access to the system
when the signal sweeps across our Ðeld of view. Because our
access to the system is roughly periodic, a plot of one pulse
interval (or amplitude, or Ñux) versus the next pulse interval
(or amplitude, or Ñux) recreates a cross section ofPoincare�
the phase-space trajectory, rather than the phase-space tra-
jectory itself. A dimensional analysis can be performed on
the data as before, but the cross section will have a dimen-
sion one less than the dimension of an actual attractor.
(This is similar to the water drop analysis described by
Shaw 1984.)

Note that instead of adding all 28 frequency channels
together, the test was conducted on a single frequency
channel of data at a time. There was some variation due to
pulses lost in the noise, pulses lost in the VLA waveguide
switch cycle, and a few spurious noise spikes. The delay time
for the time series was equal to 1 for the same reason as the
Crab pulsar data. The number of trials for each data set was
selected from 50% to 60% of the total data. Figure 2 shows
the Ðrst seven pulses of the Ðrst data set. Also pictured are
plots of the Ðrst hundred pulse peaks and pulse intervals.

2.3. Application to Pulsar Model
The theoretical description of the pulsar radio emission is

inferred from a model of nonlinear wave processes in the
pulsar magnetosphere. The turbulence model consists of
modal equations coupled through a cubic nonlinearity
(Weatherall 1997). Although the wavemodes are speciÐc to
the strongly magnetized pair plasma, the governing equa-
tion resembles the nonlinear equation, which isSchro� dinger
known to have a strange attractor (Russell & Ott 1981 ;
Wersinger et al. 1980a, 1980b).

According to this model, a two-stream instability in the
polar cap Ñow builds up amplitude in an electrostatic mode.
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FIG. 2.ÈVela pulsar data from a 1 MHz wide channel at L band with
sampling rate of 10.08 kHz. (a) Total intensity in the Ðrst seven pulses (the
intensity is in computer sampling units and is not calibrated to zero) ; (b)
the peak intensities of the Ðrst hundred pulses (the integrated Ñux is
similar) ; (c) pulse-to-pulse intervals for the Ðrst hundred pulses (the pulse
centroids are similar).

As this mode reaches large amplitude, subsequent wave-
wave interactions, identiÐed with oscillating two-stream
and modulational instabilities, transport energy into other
wavemodes. The stimulated waves have dispersion charac-
teristics of the fast branch of the ordinary mode, which
means that they are electromagnetic and superluminal and
can escape the plasma as radiation. Further nonlinear inter-
action produces Ðlamentation of the initial beam-resonant
wave, formation of soliton-like wave structures, and the
““ collapse ÏÏ of the wave energy into spatially localized

regions. These phenomena are all characteristic of strong
plasma turbulence (Zakharov 1972 ; Goldman 1984). The
numerical solutions also reveal a recurrent behavior, in
which part of the system energy resonates back and forth
between the nonlinear state and the initial state (Yuen &
Ferguson 1978 ; Thyagaraja 1979). Recurrence is a property
associated with chaotic systems.

The numerical model shows pulsar radio emission as a
nonlinear transition to strong plasma turbulence following
the slow buildup of electrostatic energy in plasma waves.
Because the turbulence is nonsteady, the radio emission is
intermittent.

The output of the pulsar turbulence code is the amplitude
of one of the wavemodes generated in the turbulence. This
mode is characteristic of the modulationally excited mode
and is singled out because it is the largest amplitude of all
the secondary electromagnetic modes. The data include
very detailed information about the waveform during a
single cycle of growth, saturation, and depletion by radi-
ative loss. This information details the ““ nanostructure ÏÏ of
an individual ““ burst.ÏÏ Longer computer runs follow many
cycles and provide strings of these bursts. The time between
bursts is governed by an evolutionary timescale associated
with the growth cycle of the turbulence and is much less
than the rotational period of the pulsar. There could be
several hundred bursts in a single Crab pulsar giant pulse.

The chaos analysis is applied to the following :

1. A computer-generated nanostructure data set, follow-
ing the time history of the amplitude of one of the modula-
tionally generated modes during a single nonlinear burst
cycle, with a resolution of 7817 points.

2. Two data sets derived from an extended computer
generated solution of the modulationally generated mode.
The solution followed the continuous development of 650
nonlinear bursts. One data set consists of the series of burst
timing ; the second data set consists of the sequence of burst
intensity.

Although it is known that the phase space of the numerical
model consists of the amplitudes of 64 ] 64 modes, the
method of time delays is used to reconstruct the phase space
for the model, anticipating that it has less than 4096 axes.

Figure 3 shows the electric Ðeld amplitude versus time for
the nanostructure solution. The in situ amplitude is derived
from assumptions of temperature and density in the Crab

FIG. 3.ÈNanostructure in a simulated burst. The timescale and electric
Ðeld amplitude are derived assuming a plasma frequency of 5 GHz for a
pulsar similar to the Crab pulsar.
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FIG. 4.ÈComputer model emission data. (a) A string of seven bursts
simulating an amplitude-squared detection at 5 GHz and assuming Crab
pulsar characteristics ; (b) the peak intensities of the Ðrst 100 bursts ; and (c)
burst-to-burst intervals for the Ðrst 100 bursts.

pulsar magnetosphere (Weatherall 1997). At an obser-
vational frequency of 5 GHz, the timescale for the whole
burst is approximately 15 ns. The modulational structure
on the scale of 2 ns derives from the recurrent behavior
described above. The burst shown here was tested with the
delay time, q, equal to 1, and with 2000 trials.

To analyze the burst string, the computer data were used
to simulate an amplitude-squared detection by a radio tele-
scope. The procedure for identifying the burst peaks and
measuring the burst intervals is the same as used for the

Vela pulse data. Figure 4 shows the Ðrst seven bursts of the
simulation along with plots of the Ðrst hundred burst peaks
and burst intervals. The timescale between bursts is approx-
imately 40 ns. The intensity derives from model-dependent
assumptions (Weatherall 1997). Note, in comparison, that
the typical pulsed radio intensity from the Crab pulsar at C
band is slightly above 0.5 mJy, although giant peaks are
detected up to 1000 Jy (Mo†ett & Hankins 1996). The data
were processed the same as the Vela pulsar data, with delay
interval equal to 1 and the number of trials at 90% of the
total data points.

3. RESULTS

3.1. Crab Pulsar
Figure 5a shows a typical correlation sum plot, log L

versus log N, for the Crab nanopulse data. This particular
plot is for the right-circular polarization in Figure 1. At
small N and L there are too few points to make an accurate
slope measurement. At large N and L there is a turnover
due to the Ðnite size of the data set : since all of the points
are already included in the sum, the correlation sum satu-

FIG. 5.È(a) Correlation sum for the right-hand circular polarization
intensity of Fig. 1 (the Crab pulsar). The curves are for embedding dimen-
sions 1È10. If an attractor were present, the slopes of the curves would
converge to the value of the dimension of the attractor. Because the slopes
of the lines do not converge, there is no evidence for a chaotic attractor. (b)
The correlation sum for the pulse peak intensity data of Fig. 4 (the Vela
pulsar).
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rates. The appropriate scaling region for computing slopes
is between these two extremes. Since the slopes of the lines
are essentially equal to the embedding dimensions, there is
no evidence for a chaotic attractor of low dimension. This
particular plot involved 700 data points and 650 trials. The
analysis is accurate up to dimension 5.7. The correlation
sum was done for higher embedding dimensions in case the
attractor required higher embedding to be seen. This
analysis does not preclude the presence of an attractor in
the data, only the presence of an attractor of dimension less
than 5.7. There is no evidence in any of the intensity and
polarization records to indicate the presence of determin-
istic chaos.

3.2. Vela Pulsar
The Vela pulse-to-pulse peak, peak interval, integrated

Ñux, and pulse centroid interval data show no indications of
a low-dimensional chaotic attractor, either. Figure 5b
shows a typical correlation sum plot for the intensity, Ñux,
and both interval analyses. The data set for this plot con-
sisted of 4755 peak data points with 3000 trials. The
analysis is good to dimension 7.4.

To evaluate the possibility that noise is responsible for
the null results, the e†ect of noise on the attractorRo� ssler
was explored. Details of this analysis are included in the
Appendix. It is found that the correlation sum of Grass-
berger & Procaccia can tolerate signal-to-noise ratios of
about 30È40 and still reveal evidence for an attractor. The
signal-to-noise ratios for our data range from a few tens to
about 100 for the Crab pulsar giant pulses and to about 100
for the Vela Pulsar Ñux and centroid interval data (T. H.
Hankins 1997, private communication). Over half of the
data sets tested were over the noise limit set by the Ro� ssler
test, excluding noise as a factor in those cases.

3.3. Pulsar Model
The correlation sum for the simulated burst nanostruc-

ture in Figure 3 is shown in Figure 6a, along with the corre-
sponding attractor in Figure 6b. For the case of the model
data, the slopes of the lines converge to the dimension of the
attractor by embedding dimension 3. By embedding dimen-
sion 7, the attractor is fully embedded and the slope is
constant over a larger range than previous embedding
dimensions. The area between the dashed lines denotes the
scaling region. The correlation curve above the top line is
disregarded because the Ðnite length of the data set a†ects
the time delay analysis, as described in ° 3.1 and also
because of the elbow in the curve above that point. Elbows
such as this are typically disregarded in dimensional
analysis (see, for instance, Grassberger & Procaccia 1983).
The curve below the bottom line is a†ected by poor sta-
tistics on the smallest scales. Least-squares Ðtting to a line
in the range of the scaling region gives the slopes of lines
5È10. The average of these six slopes gives a value of 2.09,
with a scatter of ^0.05.

This result can be compared with Russell & Ott (1981)
who Ðnd a dimension of 2.3 for a basic form of the nonlinear

equation. Because the pulsar model involves aSchro� dinger
nonlinear equation, a comparable attrac-Schro� dinger-like
tor might be expected. However, the pulsar model includes
substantial damping in some of the modes (this is due to
radiative loss), as well as modiÐed dispersion and coupling
characteristics due to the wavemodes speciÐc to the magne-
tized pair plasma. Given these di†erences, the value for the

FIG. 6.È(a) Correlation sum for the pulsar model burst in Fig. 3
(nanostructure data). The area between the dashed lines was chosen as the
scaling region. Because the slopes of the lines converge to a value of 2.09 by
dimension 3, this is evidence for a chaotic attractor. (b) The corresponding
phase-space plot for the attractor in the nanostructure data reconstructed
from successive values of the electric Ðeld amplitude. These values have not
been scaled to the values in Fig. 3.

attractor dimension should not be expected to be exactly
the same. Note also that Russell & Ott analyzed the actual
attractor, not the reconstructed attractor as shown here.

Although the dimension of the attractor is found to be
close to 2, it is not exactly 2 because the trajectory shown in
Figure 6b is manifestly not a limit torus. This is important
because an attractor of integer dimension is a simple attrac-
tor and such a system does not display chaotic behavior.
The calculation of the Lyapunov exponent described next
will further establish that the system is chaotic. Finally, the
fact that trajectories cross in two-dimensional space can be
consistent with solution uniqueness only when the dimen-
sion is greater than 2.

Steep power spectra are often found in data with colored
noise and can fool the Grassberger & Procaccia test into
revealing small dimensional attractors when none are
present (Osborne & Provenzale 1989). Because the pulsar
model nanostructure data have a fairly steep power spec-
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TABLE 1

INPUT PARAMETERS FOR WOLF ET AL. LYAPUNOV CODE

Symbol Description Value

npt . . . . . . . . . . Number of data points 7817
dim . . . . . . . . . Embedding dimension 3È7
tau . . . . . . . . . . Reconstruction time delay 8
dt . . . . . . . . . . . Time between each data point 0.13
scalmx . . . . . . Upper limit to scaling region 5È14
scalmn . . . . . . Lower limit to scaling region 1È7
evolv . . . . . . . . Time to follow divergence of two initial points 25È50

trum (Weatherall 1998), it is helpful to conÐrm the chaos
Ðnding by deriving the Lyapunov exponent. For this
purpose, the FORTRAN program of Wolf et al. (1985) is
used, with the input parameters given in Table 1. The time
units in the code are scaled to the local plasma frequency,
where one time unit corresponds to 0.03 ns in Figure 3. The
largest Lyapunov exponent is computed to be 0.11^ 0.02
bits per time unit. This nonzero, positive exponent conÐrms
the presence of chaos in the pulsar model nanopulse.

The behavior of the numerical solutions is also consistent
with an exponential divergence of nearly identical initial
conditions. This was manifest in comparison of solutions
with di†erent time steps. According to the Lyapunov expo-
nent, if the precision in the solution is one part per million,
the behavior is predictable for time T D 200 time units.
Decreasing the time increment always improved the
measure of energy conservation, as expected with a second-
order accurate (double precision) algorithm. However, the
consistency in the burst detail was lost after about 40 oscil-
lations.

Despite the success with the nanostructure model data,
the burst-to-burst variation in the longer timescale string of
bursts does not show an attractor. Figure 7 shows the corre-
lation sum plot for the burst interval analysis. The burst
amplitude analysis is very similar.

4. DISCUSSION

The lack of a correlation dimension in the Crab and Vela
pulsar data does not necessarily mean that there is no
attractor. It merely means that there is no attractor of low
dimension. If there were a low-dimensional attractor, it is

FIG. 7.ÈCorrelation sum for the pulsar model burst intervals in Fig. 4.
Because the slopes of the lines do not converge, there is no evidence for a
chaotic attractor.

unlikely that noise alone could be responsible for masking
it, as discussed in the Appendix. Although the noise analysis
was conducted on a 2500 point data set, over half of our
pulsar data sets were over 2500 points. Therefore, if noise
were the culprit in the small data sets (fewer than 2500
points), the attractor would still be apparent in the larger
data sets ; but this is not the case. Another possibility is that
the actual phase space of the system does not include inten-
sity, integrated Ñux, pulse interval, or polarization. If the
chosen coordinates are not state variables of the system,
they will not recreate an attractor even if the system is
chaotic.

A concern with the analysis of pulsar data is the e†ect of
scattering media on the signal. The two pulsars being
studied are also associated with supernova remnants, which
enhance the scattering. If the scattering is large enough, all
traces of an attractor could be lost : the photons would not
be reaching us in the same order they were emitted, and,
consequently, the method of time delays would not accu-
rately reconstruct the phase space of the system. At X band,
the scattering timescale is less than the sampling interval,
however, at C and L band, the scattering timescale is large
enough to a†ect photon order. A concern regarding the
Vela pulsar data is whether the radio emission is a useful
probe of plasma turbulence over di†erent rotation periods.
Finally, the way in which points for the pulse-to-pulse
variations in the Vela pulsar data were chosen could intro-
duce some scatter into the ideal data set (whatever that
might be), although this scatter would seem to be less
important than the noise (Shaw 1984).

The correlation dimension of 2.09 for the pulsar model
nanostructure means that, although the model consists of
thousands of modes, something on the order of three state
variables are responsible for the emission process. This sug-
gests that a derivative model like Main & Benford (1989),
which is based on rate equations for the amplitudes of a
small set of modes, may describe many essential features of
the turbulence and the emission.

Since the computer model shows chaos on the timescale
of the bursts, it is interesting that the attractor disappears
on the burst-to-burst timescale. In accounting for the fact
that the burst-to-burst variations of the model do not reveal
an attractor, several possibilities must be allowed. First, the
system may actually be chaotic only on short timescales.
Second, an attractor in these variations may be of higher
dimension than could be calculated from the data. Third,
the scatter introduced in constructing the crossPoincare�
section from burst peaks and burst intervals may be a more
important deviation than implied by Shaw. Finally, if an
attractor on the larger timescales does exist, it may not
include the variables chosen for the analysis.

The pulsar data fail to display the attractor predicted by
the computer model. This is not a decisive rejection of the
turbulent emission mechanism because there are many
qualiÐcations. On timescales of 40 ns, the model agrees with
the data in that neither show chaotic behavior (the burst-to-
burst analysis is valid for timescales º40 ns, and the Crab
nanostructure is valid for timescales º10 ns). Furthermore,
the computer model for emission is limited to the e†ect of
single bursts. The actual phenomenology of pulsar emis-
sion, if it involves a superposition of bursts emitted at di†er-
ent time and from di†erent locations, may obscure any
attractors underlying individual bursts. For a deÐnitive
analysis, pulsar data need to be tested on shorter timescales
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TABLE 2

STUDIES OF CHAOS IN PULSAR SIGNALS

P P/P0 DM f *f *t q
Pulsar (s) (yr) Typea (pc cm~3) (GHz) (MHz) (s) (s) N l

B0833[45b . . . . . . 0.089 2 ] 104 D 68.2 2.4 12 25 ] 10~6 4 ] 10`6 564b 1.5
B0809]74c . . . . . . 1.292 2 ] 108 T 5.8 0.1 ?d 10 ] 10~6 10 ] 10~6 512/1024c [5
B0823]26e . . . . . . 0.531 1 ] 107 S

t
19.5 1.4 10 0.4 ] 10~3 0.531 6200e [2

B1929]10e . . . . . . 0.227 6 ] 106 T 3.2 1.4 10 0.2 ] 10~3 0.227 3472e . . .
B1933]16e . . . . . . 0.359 2 ] 106 T 158.5 1.4 1 0.2 ] 10~3 0.359 2403e . . .
B0833[45f . . . . . . 0.089 2 ] 104 D 68.2 1.4 1 0.1 ] 10~3 B0.089 4700f . . .
B0531]21g . . . . . . 0.033 3 ] 103 Mixh 56.8 1.4 50 10 ] 10~9 10 ] 10~9 200È5000g . . .
B0531]21g . . . . . . 0.033 3 ] 103 Mixh 56.8 4.9 50 10 ] 10~9 10 ] 10~9 200È5000g . . .
B0531]21g . . . . . . 0.033 3 ] 103 Mixh 56.8 8.4 50 10 ] 10~9 10 ] 10~9 200È5000g . . .
Modeli . . . . . . . . . . . . . . . . . . . . . . . 5.0 O 0.4 ] 10~9 B40 ] 10~9 650i . . .
Modelj . . . . . . . . . . . . . . . . . . . . . . . 5.0 O 0.03 ] 10~9 0.03 ] 10~9 7817j 2.09

NOTE.ÈSymbols : P\ period ; derivative ; DM\ dispersion measure ; f\ observation frequency ; *f\ bandwidth ; *t \ timingP0 \ period
resolution ; q\ delay time ; N \ number of points in data sets ; l\ dimension of attractor found.

a Rankin 1983.
b Harding et al. 1990 : long-term timing residuals.
c Zhuravlev & Popov 1990 : single pulse intensity microstructure.
d Zhuravlev & Popov did not report the bandwidth for their observations.
e Romani et al. 1992 : pulse-to-pulse intensity.
f This paper : Vela pulsar pulse intensity (peak) and integrated Ñux and pulse-to-pulse interval.
g This paper : single pulse intensity nanostructure of Crab giant pulse.
h Not classiÐed : the morphology of the Crab pulsar proÐle is not understood.
i This paper : burst intensity (peak) and burst-to-burst interval.
j This paper : single burst intensity.

in the hope of resolving individual bursts. Also, to eliminate
(or lessen) the problem of scattering, pulsars in which scat-
tering is known to be weak should be studied.

The claims that attractors have been found in other
pulsar data sets should be examined critically. Some di†er-
ences in the data sets which might contribute to di†erent
outcomes include time resolution, number of data points,
pulsar period and age, dispersion measure, and core/cone
pulse proÐle characteristics (Rankin 1983) ; these are sum-
marized in Table 2. However, our interpretation of the evi-
dence presented in the published analyses would not lead us
to conclude that the pulsar radio emission is deterministic.
Romani et al. (1992) Ðnd that the correlation sum slopes
derived from the pulse-to-pulse intensity records of PSR
B0823]26 di†er from those of random white noise around
dimension 2. However suggestive, this departure from white
noise does not establish the existence of an attractor
(Grassberger 1987). Zhuravlev & Popov (1990) Ðnd an
attractor of dimension less than or equal to 5.3 in the micro-
structure intensity of PSR B0809]74. This number is much
higher than predicted by the model, although they were
probing structure on 10 ks scales rather than 0.03 ns scales.
However, their data sets are fairly smallÈ512 points in
most of their tests, 1024 in a few cases. This limits them to
only searching for a dimension of less than 5.42 (6.02 for the
larger sets). It is possible for the correlation sum to saturate
to the limiting dimension at large embeddings even if no
attractor is present (Ruelle 1990). Because their correlation
sum does not converge until around embedding dimension
20, their results may su†er from this phenomenon. Another
study done by Harding et al. (1990) examined 14 yr of phase
residuals from the Vela pulsar ; using the Grassberger &

Procaccia technique, they Ðnd an attractor of dimension
1.5. The authors suggest that these results could be confu-
sing chaos with steep power spectrum noise. There is no
useful comparison to either the model or the data in this
work anyway, because it probes structure on very long
timescales. We conclude that there is no evidence of low-
dimensional attractors in pulsar radio data.

The search for attractors in pulsar radio signals needs to
be pursued with data of higher time resolution in order to
make a better comparison with theory. Not only should the
data sets be longer and of higher quality, but they should
include di†erent measures about the pulsar than just inten-
sity and pulse arrival time. These measures could include
pulse-to-pulse variations of percent linear (or circular)
polarization and pulse widths. For individual pulse micro-
structure and nanostructure, the Stokes parameters Q, U,
and V could also be tested for evidence of deterministic
chaos. Furthermore, several independent tests for chaos
must be applied to the data to avoid false positive results.
Currently, any low-dimensional attractor found in the
nanostructure signal can be compared with an attractor of
dimension slightly above 2 predicted by the pulsar turbu-
lent emission model. More theoretical models should be
tested to provide a larger base for comparison with actual
pulsars. Unfortunately, chaos theory has not yet helped in
the quest to further understand the pulsar emission process.

This work has been conducted with partial support by
NSF grants AST 96-18408 and AST 93-15285. We thank
Tim Hankins and Dave Mo†ett for providing data for the
analysis and also Jean Eilek and Paul Arendt for valuable
conversations.
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APPENDIX A

THE EFFECT OF NOISE ON AN ATTRACTOR

The attractor is used to evaluate the e†ect of noise on the utility of the Grassberger & Procaccia correlation sumRo� ssler
method to identify an attractor. The data derive from the di†erential equations,Ro� ssler

dx
dt

\ [(y ] z) ,

dy
dt

\ x ] 0.15y , (A1)

dz
dt

\ 0.2] xz[ 10z ,

for the x-variable. The method of delays is used to reconstruct the attractor, and the dimension is computed from the
correlation sum analysis. The analysis is repeated after adding a Gaussian noise term to each x-value. Signal to noise ratios
(S/Ns) range from inÐnity (no noise) to 0.5, with the S/N computed from the variance of the signal divided by the variance of
the noise. To get an accurate indication of the e†ects of noise on the pulsar data, data sets of similar size (2500 points) were
generated, and trials of similar number (1000 trials) were used.

Figure 8 is the reconstructed attractor with no noise, Figure 9 shows the Ðrst 200 data points for a range of S/Ns, and
Figure 10 is the dimensional analysis for each of those S/Ns. The slopes for the attractor alone clearly converge to the
dimension of the attractor by dimension 3. By decreasing the S/N, the slope scaling region decreases. At low N and L the slope
begins to equal the embedding dimension. As the ratio is decreased even further, the values of N and L where the slope
deviates from the dimension increase. Another e†ect of the noise is to slightly increase the value of the slopes in the scaling
region, although they are nowhere near the value of the embedding dimension. Similarly, the embedding dimension where the
slope starts to converge on the dimension of the attractor increases. Even though attractor remnants can be seen in the very
low S/N plot, without comparison with the other plots in the series, the analysis by itself would not be clear evidence for a
chaotic attractor. In summary, the correlation sum of Grassberger & Procaccia can tolerate S/Ns of about 30È40 and still
reveal evidence for an attractor, although the dimension will be overestimated.

FIG. 8.ÈReconstruction of the attractor from the x-variable of the solved di†erential equations using the method of time delays. This reconstruc-Ro� ssler
tion is for an ideal data set with no noise.



FIG. 9.ÈFirst 200 x-values for the attractor with a Gaussian noise term added to each value. The approximate signal-to-noise ratio is indicated inRo� ssler
the lower left-hand corner of each plot. The correlation sums for this analysis are in Fig. 10.

FIG. 10.ÈCorrelation sums for the attractor noise analysis of Fig. 9. As noise is added, the scaling region for taking slopes decreases and theRo� ssler
slopes in the scaling regions increase until all evidence of the underlying attractor disappears. The approximate signal-to-noise ratio is indicated in the upper
left-hand corner of each plot.
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