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ABSTRACT
The plasma wave turbulence emission mechanism is studied to make predictions for the temporal

characteristics of pulsar radio emission. The turbulent emission process consists of a cycle of electrostatic
wave growth and modulational conversion into radiative modes. The onset of plasma wave turbulence is
marked by explosive spatial collapse of regions of high electric Ðeld and bursts of radiation. Intrinsic
time structure is found on subnanosecond to 10 ns timescales. The pulse exhibits an unusual spectral
signature because of the coupling of the electromagnetic modes to the underlying electrostatic pump
wave. This prediction can be tested with ultrashort timescale observations.
Subject headings : instabilities È plasmas È pulsars : general È radiation mechanisms : nonthermal

1. INTRODUCTION

Radio microstructure of pulsars is the extremely Ðne tem-
poral Ñuctuation observed at less than 1 ks, and it has long
been regarded as caused by inhomogeneity or temporal
evolution of the source. High time resolution observations

& Weatherall are providing(Hankins 1998 ; Mo†et 1997)
new data on timescales shorter than 10 ns. This very short
time structureÈwhich might be called nanostructureÈis
indicative of the dynamical behavior of the coherence
process underlying the emission.

This paper explores a radio emission model based on the
conversion of plasma turbulence, which is one of several
prominent candidates for the pulsar emission mechanism
(see, for example, reviews by andAsseo 1996 Melrose 1996).
This theory relates closely to a speciÐc emission process
proposed by et al. and modiÐed byAsseo (1990), Weatherall

The computational treatment in this paper will(1997).
provide solutions for temporal behavior in greater detail
than attempted in previous e†orts to link pulsar microstruc-
ture to plasma turbulence processes &(Arons 1981 ; Chian
Kennel de Angelis, & Fortani1983 ; MoÐz, 1985 ; Chian

see also Krishan, & Shukla1992 ; Asseo 1993 ; Gangadhara,
The model derives from an analysis of coupled mode1993).

equations describing the evolution of plasma wave turbu-
lence in strongly magnetized pair plasma. The short time
structure inferred from the emission theory provides theo-
retical predictions to test against future observational data.

2. COUPLED MODAL EQUATIONS DESCRIBING PLASMA

TURBULENCE

The full derivation of this model is given in Weatherall
In the computational model, the electric Ðeld in the(1997).

polar cap plasma is a linear superposition of wavemodes of
amplitude A
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the electron number density. In the source volume of size L ,
the spatial variations are limited to the direction parallelx

Ato the magnetic Ðeld and to one direction perpendicularx
Mto the magnetic Ðeld. Although a two-dimensional turbu-

lence might be anticipated in the form of Ðlamentary struc-
ture in (r, /) cylindrical coordinates, rectangular
coordinates are used here for computational simplicity and
are assumed to preserve the dimensional characteristics of
the turbulence. The wavevector has wavenumber com-k
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The turbulence is modeled as ordinary branch wave-
modes (see, e.g., & Barnard where the naturalArons 1986),
frequencies of the waves of interest are assumed to be near
the pair plasma frequency and are given explicitly by u

mn
2 \

The polarization vectors of these waves,k
m
2 c2] (Y ] D)/2.

have components perpendicular and parallel to the Ðeldeü
mn

,
in the ratio X/(Y ] D). Near the plasma frequency, the
polarizations are predominantly along the magnetic Ðeld
direction and couple strongly to the plasma. The quantities
X, Y , and D are deÐned as X \ 2k
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ity parameter is the sum of the squared velocity momentsv6
A
2

of the electron and positron velocity distributions, and is
assumed to be nonrelativistic : the numerical value adopted
here is The limit of inÐnite magnetic Ðeld is usedv6

A
\ 0.26c.

in this formulation.
The time-dependent evolution of the wave amplitudes is

given by coupled equations
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The mode coupling is caused by variations in the refractive
index induced by ponderomotive e†ects in the plasma. The
coupling is cubic in the Ðeld. The right-hand side of the
modiÐed wave equation is the Fourier series component of
the nonlinear coupling term, which can be written as a
convolution
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Here the sum includes the range of all wavenumber indices
excluding and Inm1, n1, m2, n2, m3, n3, m1\ m2 n1\ n2.

the spectral method numerical algorithm, this sum is evalu-
ated by forming the product in space and then(x

A
, x

M
)

computing the Ðnite Fourier transform to wavenumber
space, Because only wave Ðeld components parallel(k

m
, k

n
).

to the background magnetic Ðeld generate currents in the
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plasma, the coupling includes the geometric factor c
mn

\
o eü

mn
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A
o.

The computer model uses a Ðnite Fourier series of
64 ] 64 terms. (Because some of the mode amplitudes are
aliased to zero, the actual system consists of 42 ] 42
modes.) The electric Ðeld on a 64] 64 spatial grid is con-
structed through a Fourier sum, i.e., the inverse transform.

The assumptions used in deriving the modal equations
include wave frequencies near separable timescales,u

mn
u

p
;

quasi-neutrality ; adiabatic (inertialess)LA
mn

/Lt > u
p
A

mn
;

low-frequency motions ; and particle motions strictly along
the magnetic Ðeld (large Ðeld limit).

The simulation volume is limited to a localized region
within the polar cap plasma. In this work, the length, L , of
the grid corresponds to the transverse extent of the polar
cap plasma, which is conÐned to the region having magnetic
Ðeld lines extending beyond the light cylinder. L is much
smaller than the neutron star radius (especially when
Lorentz contraction in the direction of the Ñow is taken into
account), and during the course of a solution, the simulation
volume moves a distance in the star frame much less than
the density-scale height. The local plasma frequency derives
from the unperturbed plasma density, which is assumed to
be the same everywhere within the simulation volume.
There is no bulk Ñow or Ñow gradients present in the simu-
lation rest frame.

It will be shown in the next section that emission occurs
in temporally transient and spatially localized structures
associated with turbulence, and is narrow line in frequency.
The observed broadband radio spectra would be a super-
position of many narrow-line emissions from di†erent loca-
tions in the outÑowing pair plasma. The local plasma
frequency varies over many orders of magnitude in the
polar cap current Ñow, as inferred observationally from
radius-to-frequency mapping. The emission of individual
bursts should be uncorrelated (i.e., shot noise), since the
radiating structures are spatially unconnected. The emis-
sion can occur throughout the current Ñow because the
underlying two-stream instability is a global response of the
pair plasma to the electrodynamics of the rotating magne-
tized neutron star. The analysis of the radiation time series
in this paper is intended to test the fundamental emission
mechanism on the timescale of an individual burst and does
not model directly the ensemble emission from the polar
cap radio source.

3. DESCRIPTION OF PLASMA WAVE TURBULENCE IN THE

PULSAR MAGNETOSPHERE

This section summarizes the evolution of plasma wave
turbulence as derived from a computer solution to the non-
linear coupled wave equations.

The turbulence is presumed to originate with a plasma
two-stream instability & Ruderman A single(Cheng 1977).
wavemode, (m, n)\ (9, 0), with is incrementedk

mn
\ 0.9u

p
/c

in the computer solution with each time step at a rate
to simulate a beam-plasma instability.lgrowth\ 0.001u

pThis produces a growing plasma wave propagating in the
magnetic Ðeld direction.

At large amplitudes, the beam-resonant mode becomes
modulationally unstable to transverse wavenumber k

M
\

" is a dimensionless nonlinear parameter(u
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deÐned as
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As the nonlinear interaction intensiÐes, the instability pro-
duces Ðlamentation of the initial beam-resonant wave, fol-
lowed by ““ collapse ÏÏ of the waves along the magnetic Ðeld
as wave energy increasingly accumulates in spatially local-
ized regions. This phenomenon is characteristic of strong
plasma turbulence in unmagnetized electron-baryon
plasmas An additional(Zakharov 1972 ; Goldman 1984).
nonlinear phenomenon revealed by the numerical solution
is the recurrent behavior in which part of the system energy
is transferred back and forth between the nonlinear state
and the initial state & Ferguson This has the(Yuen 1978).
signiÐcant e†ect of modulating wavemode amplitudes.

The turbulent cascade develops very quickly. The
dynamical nonlinear timescale for modulational instability,
recurrence, and collapse, are all governed by similar rates
(given here as the maximum of the modulational instability
growth) :

lNLD u
p
"/2 . (5)

Modulational instability and strong turbulence have
important consequences for radio emission because they
generate superluminal waves with Ðnite Poynting Ñux that
can escape from the plasma as radiation.

The radiative loss also a†ects the turbulent energy
density. The basic radiative loss rate is

lloss\ c/L , (6)

where L is the size of the source region. This dissipation
is modeled in the computer code by damping each mode
at a rate proportional to its Poynting Ñux : l(k
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Because the turbulent cascade is driven at the expense of

energy in the beam-resonant mode, the onset of turbulence
also has the e†ect of diminishing the rate at which energy is
added to the beam-resonant mode. Therefore, the turbu-
lence is nonsteady, and the radio emission is intermittent.

The numerical solutions thus support the description of
pulsar radio emission as a nonlinear transition to strong
plasma turbulence, which follows a slow buildup of electro-
static wave energy in plasma waves, where modulational
instability and strong turbulence are mechanisms for the
mode conversion into electromagnetic waves.

4. MODULATIONAL INSTABILITY

There are a number of reasons why modulational insta-
bility & Liu plays an(Nishikawa 1976 ; Hasegawa 1970)
important role in the nonlinear physics of the turbulence.
As noted in modulational instability initiates the tran-° 3,
sition from the electrostatic instability to the turbulent
state. In this section, it will be shown that the modulation-
ally stimulated waves are prominent in the turbulent wave
spectrum and therefore contribute substantially to the
escaping radiation. The unique temporal signature produc-
ed by the evolution of the coherent modulational inter-
action will also be examined.

Modulational instability can be described as an oscil-
lating two-stream instability & Goldman(Bardwell 1976)
involving the interaction of four waves : two electrostatic
pump waves with the wavenumber of the beam-driven
wave, and two oppositely propagating growing waves, as
shown in Figure 1.

The turbulent wave spectrum that is derived from the
numerical solution is shown as a contour plot of mode
amplitude in The wave spectrum is dominated byFigure 2.
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FIG. 1.ÈMomentum conservation in the modulational instability. The
growing modes, and beat resonantly with thek

`
\ k0] k k~ \ k0[ k,

pump mode, through coupling with a transverse perturbation, k.k0,

the pump mode, (m, n) \ (9, 0), and the modulationally
stimulated modes at (m, n)\ (9, 1) and (9, [1). The self-
focusing phenomenon described as wave collapse is a multi-
mode modulational excitation that broadens the wave
spectrum & Rudakov this is also apparent(Vedenov 1964) ;
in The analysis of radiative characteristics (whichFigure 2.
follows in focuses on the excitation of the mode (9, 1),° 6)
which is identiÐed by the wavevector ink

`
Figure 2.

As the instability saturates, the beam-driven and modula-
tional modes undergo oscillations in amplitude on a time-
scale distinct from the rate of growth. This is a
manifestation of a nonlinear recurrence phenomenon that
was discovered in context of the nonlinear Schro� dinger

FIG. 2.ÈContours of squared wave amplitude in wavenumber space
showing the spectral distribution of developed turbulence. The ith contour
level is where the maximum at the pump mode, (m, n) \ (9, 0), hasAmax2 /2i,
the value The wavevector at (m, n) \ (9, 1) corre-Amax2 \ 0.04(8nmnv6

A
2). k

`sponds to a radiative mode initiated by the modulational instability. The
wavenumber spacing parallel to the magnetic Ðeld is and the perpen-u

p
/c,

dicular spacing is 2u
p
/c.

equation by & Ferguson In plasma waveYuen (1978).
recurrence, the initial growth of the unstable modulation of
a spatially uniform large-amplitude wave saturates, and the
wave excitation reverts to the initial uniform state.

compared this phenomenon to PoincareThyagaraja (1979)
recurrence of bounded Hamiltonian systems, in which the
low number of degrees of freedom is important. In the
Schro� dinger wave system, the degrees of freedom corre-
spond to distinct wavemodes. Using conserved quantities of
the nonlinear Schro� dinger equation, such as wave energy,

shows that the nonlinear transfer of waveThyagaraja (1979)
energy to shorter spatial scales and larger wavenumbers
must be limited to a Ðnite number of degrees of freedom.
Therefore, the redistribution of energy is among a Ðnite set
of modes, and it follows that turbulence described by the
cubically nonlinear Schro� dinger equation can show recur-
rence. The presence of dissipation by radiative loss in the
present system serves to further inhibit the degrees of
freedom.

A heuristic description of this behavior can be provided
by an analog to coupled pendulums. We regard three
oscillators : the pump mode, and the modulationalA0,modes and Recognizing that the coupling betweenA
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a useful model can be constructed from equation 2 in a
form suggestive of coupled mode oscillators :
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Behavior of the modulated amplitude can be demonstrated
by replacing the nonlinear coefficients by values of K D

and wave modulation ForK
`

DK0D K~, vD v
`

D v~.
numerical calculation, the wave energy density parameter

is used for K ; for a fully modulated wave, is"u
p
2 vD 16"u

p
2

used. Solution of the simpliÐed eigenvalue equation shows
that the energy transfers between the pump and sideA0modes and at the frequency where theA

`
A~ u1[ u2,frequencies are

u1,2 \ u
p
[ "u

p
^ 1

J18
"u

p
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Despite the somewhat arbitrary construction of the coupled
oscillator model, the two frequencies do, in fact, appear in
the frequency spectrum of the turbulence. Because the
separation of the frequencies depends on the in situ ampli-
tude of the turbulence, this suggests an interesting obser-
vational diagnostic.

Generally, the recurrent motion is not strictly periodic
and not limited to the two frequencies displayed above.
However, strong dissipation contributes to the narrow fre-
quency spectrum in this case. developsThyagaraja (1981)
an analytic formula for the recurrence rate in the form of a
Rayleigh quotient, Q(t), involving invariant functionals of
the (simple) cubically nonlinear Schro� dinger equation. This
formula bounding the recurrence time resembles the one
inferred from equation (8).

In addition to the modulational instability, other mode
transfer processes have been proposed in connection with
pulsar emission. In the model by Gurevich, & Iso-Beskin,
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tomin a curvature-plasma mode instability takes the(1988),
place of the plasma two-stream Langmuir-mode instability
and three-mode coupling takes the place of four-mode
modulational coupling in the conversion. The recurrent
behavior described here may distinguish between these
types of mode transfer radiation mechanisms, depending on
whether the three-wave decay process also exhibits recur-
rent behavior. If, for example, the wave decay process pro-
duces a spectral cascade (weak turbulence), this type of
nonlinear behavior could produce di†erent observable fea-
tures from four-wave modulational evolution toward spa-
tially coherent wave collapse (strong turbulence). A deÐning
property of the underlying wave turbulence may be whether
it exhibits deterministic chaotic behavior, since recurrence is
a behavior associated with chaotic systems. An analysis of
the turbulent conversion radiation model Ðnds, in fact, a
strange attractor (Delaney 1998).

5. TURBULENT CONVERSION AS AN EMISSION

MECHANISM

The utility of turbulent conversion for the theory of
pulsar emission can be illustrated with the following
numerical example. The computer solutions show that the
nonlinear transition occurs when the nonlinear parameter is

Other source parameters need to be estimated.0.1["[ 1.
For example, one can assume that the plasma size is of the
order of the pulsar polar cap, whereL \R

*
()

*
R

*
/c)1@2,

cm is the neutron star radius and is the rota-R
*

D 106 )
*tion frequency. Because the internal energy might be

expected to be relativistic or nearly relativistic, let kB T
D mc2. In order to infer a local plasma frequency from
the Doppler-boosted radio signal, the bulkl

p
\ l/2c,

plasma velocity is estimated to have a relativistic factor
cD 300. With these inferred and estimated parameters, the
turbulent energy density in the magnetospheric source
plasma of a 0.033 s period pulsar (using the Crab pulsar as
an example) can be calculated to be

E2
8n

D nmv6
A
2 \ 0.2 ergs cm~3 . (9)

If this energy is released into radiation on the timescale of
the light crossing time (also the dissipation rate), L /c, the
power in the plasma rest frame is dP@/d)@\ 2.6] 1018 ergs
s~1. The power received by a stationary observer in the
relativistically boosted radiation beam is dP/d)\ (2c)4dP@/
d)@ & Lightman and the received Ñux is(Rybicki 1979),
(dP/d))/(R2*l). The intrinsic bandwidth is not known, but
*lD 0.1l in the computer solutions (described in From° 6).
the distance of the Crab pulsar, R\ 6 ] 1021 cm, the com-
puted Ñux is

Fl \ 0.2 Jy
A L
8 ] 104 cm

B2A kB T
500 keV

B

]
A l

p
5 GHz/300

B2A c
300
B4A500 MHz

*l
BA "

0.1
B

, (10)

as is quite reasonable allowing for the uncertainties in the
model parameters. Typical pulsed radio Ñux from the Crab
is slightly less than 1 Jy, with giant peaks up to 104 Jy

et al.(Lundgren 1995).
By invoking radius-to-frequency mapping, a crude fre-

quency spectrum can be inferred from equation (10). The

following dependences are assumed: constant velocity
current Ñow along magnetic Ðeld lines, so L P r3@2 and

a burst bandwidth proportional to the nonlin-l
p
P r~3@2 ;

ear frequency shift, *lP "l (see, for instance, andeq. [8]) ;
constant temperature in the Ñow. With these assumptions,
the Ñux is predicted to fall o† as

FlP l~1 . (11)

Not included in this simple scaling are the statistics of
superimposed bursts or details relating to the structure of
the polar cap current Ñow.

6. SPECTRAL SIGNATURES OF TURBULENT EMISSION

The very short-time emission behavior is of particular
interest, since it is closely tied to the physics of the emission
process. Computer solutions of turbulent emission show
that the time structure of a single pulse is governed by the
two timescales given by and i.e., the nonlinearlNL~1 lloss~1,
dynamical time and the radiative loss time. Note that the
growth time is largely decoupled from the details of the
emission, except for the buildup of the turbulence and pos-
sible connection with the longer-timescale microstructure.

The dynamical timescale of the turbulence (eq. [5])
depends on the value of " when the turbulence decouples
from the beam-driven wave. Simulations show this to be
consistently on the order of 0.1, so the characteristic struc-
ture will be tens of wave periods long. At 5 GHz, this corre-
sponds to about 1 ns or less.

The radiation loss time in this numerical model(eq. [6])
is also the time during which the system maintains its coher-
ence. In the case of weak dissipation, the coherence time-
scale is longer than the dynamical timescale. As a result, a
single pulse is long enough to exhibit modulation owing to
the recurrence e†ect described in ° The burstSection 4.
continues until the turbulent energy is diminished by the
dissipative loss.

An example of this characteristic pulse structure is shown
in The radiation loss parameter isFigure 3. lloss \ 0.05u

p
;

therefore, the dissipation timescale is on the same order as
the nonlinear timescale. E(t) is the electric Ðeld waveform
derived from the in situ amplitude of the mode (m, n) \
(9, 1). In addition to the time series of wave electric Ðeld,

shows the power spectrum and two inferredFigure 3
observational functions : the amplitude-squared detection,
and the autocorrelation function.

The power spectrum exhibits the two frequencies identi-
Ðed in From the displacement from the plasmaequation (8).
frequency and the separation of the two frequencies, the
nonlinear plasma parameter is inferred to be "D 0.1, which
is consistent with the actual excitation of the turbulence.

The third frame shows an example of a detected signal.
If the wave electric Ðeld at frequency is given by E(t) \l0t), so that a(t) is the amplitude of a signal,a(t) exp (il0the amplitude-squared detection is proportional to
I(t) \ o a(t) o2. Before computing a(t), the spectral Ðeld E(l) is
multiplied by a cosine Ðlter spectral function S(l) given by
S(l) \ cos within the frequency band[n(l [ l0)/*l]

and by S(l) \ 0 outside band. Thisl0[ *l\ l\l0 ] *l
detection function constructs a received signal at frequency

through a bandpass of *l, as it would be recorded byl0radio telescope observation. The vertical lines on the power
spectrum represent the bandpass of the Ðlter used in the
calculation. Note that the bandpass necessary to detect the
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FIG. 3.ÈNumerical simulations of a nanopulse. Time is given in units of where is the plasma frequency in the plasma frame. Then t is thel0\ 2cl
p
, l

p
l0number of wave periods in the observerÏs frame. Upper left : amplitude of the electric Ðeld in the mode (m, n) \ (9, 1) normalized to corresponding(8nnmv6

A
2)1@2

to the emitted signal ; Upper right : Power spectrum of a nanopulse ; L ower left : Total intensity of a nanopulse as it would be detected by a radio telescope
observation at band-limited to and decimated to a sampling rate of L ower right : Autocorrelation function of the pulse intensity, as it wouldl0, 0.1l0 2.5l0~1.
be observed with these instrumental parameters.

modulated signal at 5 GHz is several hundred MHz. The
nominal received frequency is assumed to be related tol0the local pulsar plasma frequency by the Lorentz shift l0D

where c is the Lorentz factor of the motion of the2cl
p
,

pulsar current Ñow in the laboratory frame. The spectral
analysis does not depend directly on assumed values of u

pand c because the simulation scales to The intrinsicl0.temporal pulse width, the nonlinear recurrence time, and
the coherence time all scale to the observation frequency as

thus, the nanostructure will broaden with lower fre-l0~1 :
quency.

The autocorrelation function is computed by multiplying
the Fourier transform of intensity by itself, and trans-
forming the product back into the time domain : R

I
(q)\

The autocorrelation function of the pulsarFT [I2(u)]/I12(t).
signal is calculated in this fashion and is employed by obser-
vers to analyze the temporal structure of radio data (see,
e.g., The fourth frame in Figure 3 shows aCordes 1976).
secondary peak in the autocorrelation function due to the
nonlinear recurrence in the underlying turbulence. Other
peaks that appear can be aperiodic, since recurrence is a
chaotic process. This autocorrelation function applies to the
signal of a single burst on extremely short lag times.

The distinction between what is known as microstructure
and the ““ nanostructure ÏÏ described in this paper is made
deliberately. Nanostructure is not merely microstructure
resolved on a shorter timescale. Nanostructure is the intrin-
sic structure of an individual burst, which in pulsar

phenomenology might be referred to as a ““ shot.ÏÏ The
pulsar signal is modeled as shot noise (Cordes 1976),
namely, a random superposition of individual bursts. The
modulation of the amplitude of the shot noise is the inter-
pretation applied to the microstructure autocorrelation
function Nonlinear wave dynamics deter-(Rickett 1975).
mines the nanostructure. The existence of microstructure
implies a systemic change in the amplitude of burst events,
inÑuenced, perhaps, by modulation in the polar cap current
Ñow, or in other behaviors of the turbulence ; for example,
nucleation of the spatial wave collapse DuBois, &(Doolen,
Rose Rose, & Russell Microstructure1985 ; DuBois, 1988).
is seen in pulsars only at low radio frequency (below D1
GHz), while nanostructure should be present at all fre-
quencies.

7. SUMMARY

This analysis shows that the emission microphysics can
leave imprints on the received signal. Here, speciÐc tempo-
ral behaviors are inferred from the theory of turbulent
plasma emission. The derived autocorrelation function
associated with nanostructure in an individual resolved
pulse is depicted schematically in The model pre-Figure 4.
dicts several characteristic features. First, there is an intrin-
sic pulse width of about one nanosecond, which is governed
by the timescale of the modulationally induced turbulent
collapse, as given in Second, the nanostructureequation (5).
indicated by peak(s) in the autocorrelation function is due
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FIG. 4.ÈCharacteristic autocorrelation function at 5 GHz showing
nanostructure in emission derived from plasma turbulence stimulated by
the modulational instability. Characteristic timescales are identiÐed
assuming the nonlinear parameter "\ 0.1 and source size L , given by the
polar cap size of the Crab pulsar.

to the coupling between the radiative mode and the plasma
mode, with the recurrence timescale given by 2n/(u1[ u2),where the two frequencies are given in Third,equation (8).
the intrinsic nanostructure extends to almost 10 ns, as
determined by the coherence time. The coherence time, set
by the radiation loss rate, is estimated from the light travel
time across the source volume, as in Note thatequation (6).

the nanostructure will be present at all frequencies. The
characteristic timescales are frequency dependent, becom-
ing longer at lower frequency.

The turbulence emission model can be tested using high
time resolution observations of pulsar radiation. In general
terms, the emission model suggests intrinsic pulse widths
smaller than 1 ns, which may repeat over timescales of a few
nanoseconds to 10 ns. The theory predicts spectral side-
bands whose separation in frequency is a function of the
nonlinearity of the medium (i.e., the in situ electric Ðeld
amplitude). Based on the predictions, an observational
bandwidth of 10% might be necessary to detect the spectral
signature. Such structure, if observed, would relate directly
to parameters in the source region, speciÐcally source size
and turbulent energy density.

In conclusion, the observational detection of multiple-
humped correlation functions on these very short timescales
would strongly support an emission mechanism involving
mode conversion transfer e†ects, such as are documented
here in the conversion of plasma wave turbulence.

In addition to the theory in this paper, mode conversion
is invoked in a broad class of collective stimulated scat-
tering processes proposed for pulsars, including masers.
Analysis of other mode conversion mechanisms will be
needed to determine whether the spectral signature is
unique to the modulational transfer mechanism.
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interesting discussions, and for support from NSF grant
AST 93-15285.
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