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ABSTRACT

Pulsar emission models often invoke wave instabilities in counterstreaming pair plasma as a mechanism to
impose source coherence. The viability of the two-stream instability mechanism in a hot pair plasma, such as
the one created by high-energy photons in a neutron star’s magnetic field, is addressed in this paper. A two-
stream dispersion relation is solved numerically, using a relativistic and covariant expression of the plasma
dispersion function for a relativistic Maxwellian distribution. In the context of standard pulsar magnetospheric
models, instability is demonstrated over the regions of P and P parameter space in which most pulsars are

found.

Subject headings: instabilities — plasmas — pulsars: general — radiation mechanisms: nonthermal

1. INTRODUCTION

In conventional polar cap models, pulsar radio emission
derives from a relativistic electron-positron plasma streaming
through the magnetosphere of a magnetized, rotating neutron
star (Sturrock 1971; Ruderman & Sutherland 1975; Arons &
Scharlemann 1979). The exact radiation mechanism is uncer-
tain, although the high brightness of the radiation appears to
require some form of coherence in the radiating region. Cheng
& Ruderman (1977b) suggest that the coherence originates
with the electrostatic two-stream instability of positron and
electron streams flowing at different velocity from the polar
cap. Streaming instabilities are fairly ubiquitous in laboratory
and space plasmas and are prominent in pulsar magneto-
spheric models as well (see reviews of models by Melrose 1990
and Arons 1981). Coherence manifests itself in spatial density
bunching in the streams (Ruderman & Sutherland 1975) or
through collective plasma effects (Asseo, Pelletier, & Sol 1990).

On the other hand, energy dispersion in particle distribu-
tions in the pulsar magnetosphere can have an adverse effect
on the onset of streaming instability (Buschauer & Benford
1977). The energy dispersion can arise from several causes,
including the frequency spectrum of the pair-creating y-rays
(Tademaru 1973); the finite spread in energy of particles
created by energetic y-ray decay in magnetic fields (Daugherty
& Harding 1983); and synchrotron cooling of the pairs sub-
sequent to creation (Tademaru 1973). However, because the
y-ray optical depth is an extremely sensitive function of the
photon energy and magnetic field geometry, the highest energy
y-rays are absorbed in a short spatial gap, and with limited
transverse momentum in emitted particles. Therefore, effects
on the particle distribution due to y-ray spectrum and synchro-
tron cooling are excluded from the following discussion. Still,
the energy dispersion can be very large even when it is assumed
to derive solely from the intrinsic creation energy uncertainty.

A generalized Penrose criteria for relativistic electron and
positron streams (Buschauer & Benford 1977) shows that the
plasma streams are stable when their momentum dispersion is
comparable with the momentum separation of the beams. The
moderating effect of energy dispersion on instability is also
known through the inclusion of velocity broadening in the cold
beam dispersion relation (for instance, Hinata 1975) and in
plasma simulations by McKee (1971). Consequently, streaming
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instability models based on cold plasma theory have been vul-
nerable to the criticism that the plasmas are actually hot (cf.
Melrose 1990; Arons 1981).

If, in fact, streaming instability is necessary for the pulsar
radiation mechanism—whether by coherent curvature or a
plasma-type process—will this constrain the conventional
pulsar model? To answer this question, quantitative threshold
conditions for two-stream instability are sought and are pre-
sented in this paper.

The analysis uses a covariant theory for the wave dispersion
function, assuming a relativistic thermal distribution of particle
energies, as developed in § 2. The adoption of a thermal dis-
tribution is an expedient way to characterize a peaked distribu-
tion with a finite spread in energy, without making a detailed
analysis of the pair plasma formation and evolution. Disper-
sion functions for thermal relativistic plasmas (Melrose 1982;
Godfrey, Newberger, & Taggart 1975a,b) need to be used in
place of classical plasma theory when the kinetic temperature
of the plasma approaches a few percent of the particle rest
mass. Models for plasma wave phenomena in energetic pulsar
magnetospheres generally do not include relativistic disper-
sion.

In § 3, the plasma theory is applied to pulsar streaming
instability. Instability is demonstrated for a model pulsar mag-
netosphere by numerical solution of the relativistic dispersion
relation. The specific plasma parameters which are adopted for
this case study are deduced from standard theory. In the
general case, the constraints of stream temperature on insta-
bility are shown to be only a weak function of the primary
beam kinetic energy. Conclusions in §4 support the
occurrence of streaming instability in pulsar plasmas. Only
plasmas created in the most energetic neutron star systems are
too hot for instability. The constraints placed on the pair cre-
ation process are consistent with a Penrose stability criteria
which is presented in an Appendix.

2. RELATIVISTIC PLASMA RESPONSE FUNCTION AND
LONGITUDINAL DISPERSION RELATION

The relativistic Maxwellian distribution is the Juttner-Synge
function. A two-temperature model with relativistic tem-
perature in one-dimension (the x-dimension) is assumed: the
temperature in the orthogonal spatial dimensions is assumed
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to be zero due to the anisotropic synchrotron radiation loss. In
this case, a strong magnetic field is aligned in the x-direction.
The magnetic field is assumed to be uniform and without cur-
vature.

The one-dimensional distribution function of space-time
four-momentum p is given in covariant form by

2.2 P U

Flp) = 1(C) op-p— mC)®< )CXP< ¢ mc2>' (1
The parameter { is inverse temperature, { = mc?/ky T. The
delta-function, J, sets the magnitude of the four-momentum
equal to the particle mass, mc; the step function, ®, assures
that particles always propagate forward in time. K, is a modi-
fied Bessel function. The quantity # is the four-velocity; #,
refers specifically to the four-velocity of the rest frame of the
medium. When the rest frame of the observer and medium are
the same, u, is (c, 0) in the observer’s frame. The distribution
function is normalized to the density in the rest frame of the
medium:

=

1
=3 Ju *uy F(p)d®p

In a specific reference frame, the usual distribution function
in momentum space, f(p,), can be recovered by integrating
over the zero-component of the four vector:

f(Px)——JV Ugps F(p)dpo = 2K 0 exp [—Lyyo(l — BBo)]
@

where 8, = vo/c and y, are the velocity and relativistic factor of
the center-of-mass frame of the particle distribution relative to
the observer. Then, the density in the observer’s frame is given
by an integral: n = ( f(p,)dp,.

An oscillating longitudinal electric field of frequency @ and
wavenumber k is sustained by polarization charge induced in
the plasma. To describe the plasma response, a scalar function
xs(w, k, {) is defined for each plasma species s (s = + for posi-
trons, — for electrons). The dielectric permittivity of the
plasma is given by e =(1 + x4+ + x-) &, where g, is the
vacuum permittivity. Evaluating the response function is the
key to identifying wavemodes (when ¢ = 0) and instabilities
(when w or k have imaginary parts).

The longitudinal plasma response function is derived for the
relativistic thermal distribution in covariant form by Melrose
(1982) and Godfrey et al. (1975a). Specializing to the rest frame
of the medium, the response function becomes

o [
w6 0= 31,00 L

exp (—{y)
(B — 20

where z is the wave phase velocity, z = w/kc. The plasma fre-
quency is defined in the rest frame: @7, = 477, e*/m. Equation
(3) is the relativistic, thermal generalization of the familiar cold
plasma response function,

g, ©)

@2,

Note that when noncovariant quantities, such as plasma
density and plasma frequency, are referred to the rest frame of
the medium, these quantities are marked with an overbar.
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The general plasma response function for a fluid moving at
4-velocity u, can be arrived at from equation (3) by reexpress-
ing w and z in the Lorentz invariant forms w = k * u, and
z = [(k  up)*/((k * up)*> — k + kc?]'/2. In this notation, k is the
wave 4-momentum (w/c, k). In a given reference frame in which
the fluid center of momentum is moving at f,, the response
function is given by

@2 [ exp [—{yyo(l —

2k2K(0) (/k — Pey?

BBo)]

xs, k, ¢, )BO) = - ag .

O

The quantities w and k are specific to the observer’s reference
frame in which the fluid velocity is §,.

Finally, the invariant longitudinal dispersion equation for a
plasma with two streams moving with velocities #, and f_ is

1+X+((J), ka C+’ B+)+X-(w, k’ C—’ ﬁ_)=0, (6)

where the streams may have different density and temperature.

The choice of a reference frame to describe wave eigenmodes
is usually one in which some aspect of the physics is simple: for
example, either w or k might be purely real numbers. Cheng &
Ruderman (1977b) solve for wavemodes in the neutron star
frame with real k and complex w, where positive imaginary
part of w indicates a growing mode. Hinata (1975), on the other
hand, adopts the same frame and solves for real w and complex
k. It is not obvious which corresponds to physical growth,
since there is no a priori reason for fixing the temporal or
spatial behavior of wavepackets based on the growth of any
single mode (Sturrock 1958). As a practical matter, it seems
sufficient to establish instability by finding either temporal or
spatial growth.

The classical dispersion relation used by Cheng & Ruder-
man (1977b) and Hinata (1975) can be recovered by a covari-
ant generalization of the nonrelativistic, cold plasma response
function equation (4); i.e., with a Lorentz transformation of
density and frequency from the plasma frame to the neutron
star frame. The cold model can be modified with the addition
of a frequency broadening term, ik Au. By comparison, equa-
tion (5) incorporates the particle distribution directly in the
plasma response integral. This kinetic treatment also gener-
alizes the plasma wavemodes to a relativistic system.

3. TWO-STREAM INSTABILITY

The instability theory is applied to a pulsar with a character-
istic period P = 0.5 s and magnetic field B = 10!2 G. The mag-
netic spindown rate for this pulsar (Ruderman & Sutherland
1975), P = (B/3 x 10*°)?’P~* =2 x 107 !5 places it centrally
within a PP distribution of pulsars (Michel 1991). The param-
eterization of the magnetospheric pair plasma follows closely
the assumptions in the standard model.

3.1. Magnetospheric Plasma Model

According to the standard model, a relativistic charged par-
ticle stream (the primary beam) is pulled out of the neutron
star by the electric field induced by the corotating magnetic
field. The density, ng, of the particle stream is such as to coro-
tate with the star: this happens when its charge density is
eng = * B/(2nc) (Goldreich & Julian 1969), where Q is
angular rotation vector of the star. The acceleration potential,
¢s, is space-charge limited (Cheng & Ruderman 1977a; Arons
& Scharlemann 1979), which fixes the primary stream energy

asedg.
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Gamma-ray production by the primary stream makes a sec-
ondary plasma of electron and positron pairs. The y-rays have
characteristic energy hv = (3/4m)y3hc/p (Ruderman & Suther-
land 1975), where the radius of curvature of the magnetic field
lines guiding the flow is assumed to be p = 10° cm. The optical
depth of the curvature y-rays to the production of pairs in the
pulsar’s magnetic field is a sensitive function of the parameter

1 v B |,

x=§m—cz—lgsm0, (7)
where 6 is the angle between the field and the photon wave
vector, and B, = m?c3/eh = 4.4 x 1012 G. Because the opacity
is very sensitive to y, the photons are absorbed where y ~ 0.15
(Daugherty & Harding 1983; Ruderman & Sutherland 1975).
The streaming velocity of the secondary plasma has a net rela-
tivistic factor y, = hv/2mc? (Ruderman & Sutherland 1975).
The distribution of energies about the mean y has a half-width
given by AE ~ 0.36)'/2hv (Daugherty & Harding 1983). The
density n, ~ n, ~ n_ of the secondary plasma is estimated by
equating the kinetic energy in the secondary beams to the
kinetic energy of the primary beam ngegg ~ 2n,y, (Cheng &
Ruderman 1977b).

The energy distribution of the secondary stream has the
approximate form shown in Figure 1a, where the width is due
to x =0.15. Figure la is a thermal distribution with tem-
perature parameter { = 18. Note that the temperature is non-
relativistic: the spread in energy AE » mc? can be found in
particle distributions with nonrelativistic temperature, kg T <
mc?, when the bulk streaming energy is large.

The neutral pair plasma is not force-free: the streams experi-
ence an equal but opposite electric force and acquire a relative
velocity, and a net charge density. The number density in each
stream must be such as to maintain constant particle flux in the
neutron star frame (Cheng & Ruderman 1977b). Setting the net
charge density equal to the Goldreich-Julian density con-
strains the counterstreaming velocities f, and f_, and den-
sities n, and n_, of the two particle streams.

The resulting distributions are shown in Figure 1b. In con-
structing the new distribution functions, it is assumed that the
momentum spread of the two beams remains constant during
acceleration and is subsequently thermalized to this momen-
tum spread. Because the momentum half-width of the
relativistic Maxwellian with central momentum p,,,, is approx-
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Fi1G. 1.—Pair momentum distribution functions in neutron star frame.
(@) Thermal distribution with { = 18 idealizes pairs created with y = 0.15;
(b) thermalized distributions of accelerated streams.
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TABLE 1
PULSAR MAGNETOSPHERIC PARAMETERS

Physical Quantity Symbol Value
Period ......ccoviiiiiiiiiiii P 0.50 s
Spindown rate ............ccceeeueiinnen. p 2x 10718
Magneticfield ..............c.ooeeeenn.e. B 9.5 x 10! G
Primary beam density ................... ng 1.3 x 10" cm ™3
Primary beam energy .................... edy 2.5 x 10*2 eV
PTAY ENETEY +ovnrrernrnrnarernrnarennennss hv 3.5x 10° eV
Pairdensity ........ccocvvvveniiniinenne. n, 9.672 x 10*3 cm ™3
Pair streaming factor .................... Vs 19
Inverse temperature ..................... {, 0.019
Pairdensity ..........ocoeiveiiininnan... n_ 9.659 x 10*3 ¢cm~3
Pair streaming factor .................... Y- 6424
Inverse temperature ..................... (- 60

imately p,../¢!/* (see eq. [A2]), this means that the stream
which decreases its momentum while maintaining its original
momentum spread will decrease its parameter {, or increase its
temperature. The stream which increases in momentum will
thermalize at a cooler temperature. As a result, one of the
streams becomes relativistically hot ({, < 1), while the other
acquires a quite different, nonrelativistic temperature ({_ > 1).
Although resistive effects in a turbulent plasma might therma-
lize the plasma on timescales as short as the inverse plasma
frequency, the process of thermalization is not crucial to this
argument.

The plasma parameters of the primary and secondary mag-
netospheric streams are summarized in Table 1.

3.2. Numerical Solution of the Dispersion Relation

The neutron star frame is not the most convenient one for
numerical solutions because both of the streams are boosted to
high y by the bulk, highly relativistic magnetospheric flow. A
frame of reference which is perhaps the closest approximation
to a reference frame tied to the secondary magnetospheric
plasma is the center of momentum frame, where each stream
has equal momentum. Because one of the streams has higher
density than the other, this frame resembles most closely the
common two-stream paradigm in which a diffuse stream flows
through a dense background plasma (see Fig. 2). The center of
momentum frame has ycy = 83 relative to the neutron star
frame. The plasma parameters of the secondary magneto-
spheric streams in the boosted frame are given in Table 2.

Putting these parameters into the dispersion relation given
by equation (6), and solving for complex frequency w using a
complex numerical rootfinder (Wolfram 1988), provides insta-
bility growth rates, as shown graphically in Figure 3. For com-
parison, growth rates are also computed in the case of cold
streams ({, = {_ = 1000). The numerical maximum growth
can be compared with the cold theory of Hinata (1975), which
gives w/d,, =3"7n_y3/2** n,y y,)=00064 and
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FiG. 2—Pair momentum distribution function of Fig. 1b transformed to
the CM frame, ycy = 83.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994ApJ...428..261W

264 WEATHERALL Vol. 428
TABLE 2 TABLE 3
PULSAR STREAM PARAMETERS IN Y FRAME PAIR STREAM TEMPERATURES
Physical Quantity Symbol Value Pair Creation Pair Energy

- Parameter y Width AE/mc? L. ¢
Frame streaming factor .................... Yem 83
Pairdensity ...........c.ceeeeiveiniinnnnn.n. n, 1.07 x 103 cm ™3 L7 i, 6000 6  0.0055
Pair streaming factor ....................... v+ B+ -2.13 037 overininnnn. 2800 35 0.014
Inverse temperature ........................ [ 0.019 019 ...l 2000 60 0.019
Pairdensity ...........cooeiiiiiiin n_ 6.25 x 10! cm ™3 0.068 .............. 1200 185 0.033
Pair streaming factor ....................... y_B_ 41.3 0030 .............. 800 390 0.048
Inverse temperature ........................ ¢ 60 0.0025............. 230 3700 0.16

ke/,. = 1/[y+(B+ — B-)] = 0.249 for maximum growth. The
effect of a finite temperature in the streams is a decrease in the
instability growth rate. Another characteristic of the hot
plasma instability is a broadening of instability to large wave-
number, which appears to be a relativistic effect on the plasma
wavemode (Godfrey et al. 1975a).

The significance of this result is that pulsar magnetospheres
are not stabilized by thermal effects. This can be attributed to
the fact that one plasma stream has a nonrelativistic tem-
perature, ky T < mc2. Consequently, this stream has a well-
defined momentum distribution peak in any rest frame, and in
particular in the rest frame of the density perturbation. The
Penrose criteria (such as the one presented in the Appendix)
can be interpreted as requiring, for instability, distinguishable
particle distributions in momentum space (see also Buschauer
& Benford 1977). The fact that one of the pulsar streams has a
nonrelativistic temperature favors the fulfillment of this
requirement. Therefore, it is not surprising that streaming
instability can be a fairly robust phenomenon in pulsar magne-
tospheres. Solution of the relativistic plasma dispersion func-
tion underscores this finding.

In order to generalize this result, consider again the param-
eter x. A different value of y implies a change in the energy
spread in the plasma pairs when they are are created. Table 3
shows how varying y affects the “temperature” in the two
streams. An adjustment of the plasma temperatures will also
modify the instability growth rate. The computed growth rate
maxima are shown in Figure 4 as a function of y. As
approaches unity (or the energy spread becomes comparable
to the streaming energy), the instability becomes very weak.
This is consistent with an analytic stability criteria derived by a

0.0020[ T ' ' ' ]
0.0015 - ]
3% E
< 0.0010} P .
s C ]
0.0006 F . 3 ]
0.0000 [~ M . ]
0.00  0.20 0.40 060  0.80 1.00
kc/ap

F1G. 3—Two-stream instability growth rate vs. wavenumber in the CM
frame. The solid line corresponds to plasma distributions of Fig. 2. The dashed
line indicates growth rates in the limit of zero temperature in the streams.
@, =126 x 10''s™ 1.

Nyquist method in the appendix. Equation (A6) shows insta-
bility for y < 1.1.

However, it is readily appreciated that there is very little
latitude in the parameter y (cf. Ruderman & Sutherland 1975).
The absorptivity of a y-ray of energy hv to pair production,
written, for y < 1, as (Michel 1991)

"~ hv/mc?

has an exponential dependence on y. The numerical constant is
ko =19 x 10" cm™'. Assuming that a curvature photon a
distance r above the surface traverses the magnetic field at an
angle sin 6 = r/p, the magnetosphere becomes optically thick
at a height where y satisfies the transcendental equation:
(ko P)X3%)° exp (—4/3y) = n, where n = 6(hv/mc?)*(B/B.,). Near
threshold for pair creation, n = 1, and y = 0.15. However, y is
only 0.5 even when n = 10°.

It is worth noting that for extremely energetic magneto-
spheres for which hv/mc*> ~ 10°%, or primary beam energies
exceeding 10'3 eV, the pair-creation parameter y can approach
unity. In this case, two-stream instability may be suppressed by
the high temperature of the pair streams, so that the coherence
process is absent. These energetic primary beams can be
expected only in the most rapidly rotating neutron stars with
large magnetic fields. If, indeed, the two-stream instability is
necessary for the coherent emission, this predicts a class of
energetic neutron stars with rapid rotation rates which are not
pulsars. These objects can “turn on ” as pulsars as they age.

x(x) 3pe™ 4%, ®

4. DISCUSSION

Plasma pairs in the pulsar magnetosphere are expected to be
created with a finite spread in energy. The effect of a broad
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FiG. 4—Instability growth rate maximum vs. pair creation parameter y
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particle momentum distribution on instability has been investi-
gated using relativistically complete plasma dispersion func-
tions. In context of conventional magnetospheric models, only
one of the particle distributions turns out to be relativistically
hot. A diffuse, cold beam moves through this plasma (viewed in
the plasma rest frame), and instability is likely to occur,
resulting in coherence in the source.

An important parameter in assessing the pulsar emission
process is the pair-creation parameter y. Unstable pulsar mag-
netospheres occur for 0.1 < y < 1. For values of y less than 0.1
the y-ray optical depth to pair creation becomes vanishingly
small: hence, as pulsars age, and their period increases, the
conditions required to create a pair plasma can no longer be
maintained. At the upper end, for y greater than unity, both
pair distributions are relativistically hot, and kinetic effects
suppress instability. However, y is relatively insensitive to the
dynamical parameters in the pulsar magnetosphere, and
plasmas are created with pair parameters less than unity for a
range in y-ray energy over six decades in energy. Most pulsars
fall in this energy range. The theory suggests that only
extremely energetic systems (such as newly formed neutron
stars) have magnetospheric plasmas stable to the onset of
plasma turbulence.

Although this analysis has been done for thermal distribu-
tions, the results should be relevant to nonthermal pair dis-
tributions with an identifiable peak, since the temperature
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parameter has been used primarily to parameterize the energy
spread. Another idealization has been to treat the system as
one-dimensional, where the instability is purely longitudinal
and the magnetic field is constant. In more than one-
dimension, streaming instabilities affect modes with mixed
electromagnetic characteristics (Asseo et al. 1990), and the
eigenvalue problem is more difficult. However, coupling of the
beam to these modes with finite transverse wavenumber is less
direct, and Asseo et al. (1990) show that transverse effects are
stabilizing for streaming instability. Finally, for the two-stream
instability, the curvature of the magnetic field does not contrib-
ute directly to the coupling.

In summary, it is found that pulsar magnetospheres are gen-
erally unstable to streaming instability, even when the finite
temperature of the plasma is taken into account. Because the
instability process is robust over a broad range of primary
y-ray energies expected in pulsars of different period and mag-
netic field strengths, it remains a viable mechanism for impos-
ing coherence on the pulsar electromagnetic emission.

The author is grateful to Jean Eilek for helpful advice and
valuable criticism, and for insightful discussion with Tim
Hankins, Gregory Benford, and Dale Frail. New Mexico
Tech’s Office of Research and Economic Development provid-
ed support.

APPENDIX

A PENROSE CRITERION FOR RELATIVISTIC THERMAL STREAMS

A Nyquist technique can be applied to the two-stream dispersion relation to determine if there are roots with Im(w) > 0. The
condition for instability is given as

<0, Al
- BD)— o (D
where F(p) = f(p) + f-(p); B(p) = p/(m*c* + p»)*/?; and By = po/(m*c? + p3)*/? is the velocity where 0F/dp = 0. Equation (A1) is a
relativistic generalization of the Penrose criteria (Krall & Trivelpiece 1986; Buschauer & Benford 1977).

The Penrose function P in equation (A1) can be evaluated for relativistic Maxwellian streams using some simplifying assump-
tions. When the streams are peaked at p,,,,- > mc and p,,,, . > mc, the distribution function can be simplified as a Maxwellian
distribution in momentum with half-width Ap, = p_...+/({4)"*:

No + exp |:_ (p — pm;xj:)z] .
V2nAp 2Ap%

The mean density has been written so that ny./[(2n)/?Ap.] = 714 /[2K,({+)] exp (—{,). Also, note that ny, ~ ny_, and Ap, ~
Ap _. By further assumption that | p,.+ — Pmax— | € Pmax+ a0d Pray - » the denominator can be rewritten

pe r @©LonFG) |

f+() = (A2)

Bp) — Bo =2 ;2” % me . (A3)

0

Making use of equations (A2) and (A3), the Penrose function becomes

L b
—"OmzczApz

{1 + =n'?z Re [iw(2)]} , (A4)

where w(z) is an error function with argument z = [(Dax+ — Pmax—)/21 1 [(2)/?*Ap)], and i = (—1)/2,
Evaluating P, for example by a series expansion, one finds that P < 0, where

Pmax+ — Pmax— > 131Ap .

> (a3)
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Applying equation (A5) to the pulsar streams, Where (Pax+ — Pmax-)/2 ~ 3hv/c and Ap ~ 0.36x'/2hv/c, the Penrose condition for

instability becomes

x<11. (A6)
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